PARADOX
SQLLINK

USER'S GUIDE

BBBBBBB

Paradox SQL Link

Version 4.0

User’s Guide

Borland International 1800 Green Hills Road
PO. Box 660001, Scotts Valley, CA 95067-0001, USA

Copyright ©1985, 1992 by Borland International. All rights reserved. Borland and
Paradox are trademarks of Borland International, Inc.

Printed in the U.S.A.

10 9 8 7 6 5 4 3

Chapter 1

Introduction

Overview of SQL Link features
What's changed in this version?

How to use this book .
Prmtmg conventions

What to read before you use SQL Lmk .

How to contact Borland
Registering your copy of SQL Lmk
Resources in your package
Borland resources

Chapter 2
Fundamentals

The SQL environment
The database administrator .
Transaction processing
Nulls . .
Using Paradox to access SQL data
Accessing existing data .
Replicas . . .
Connecting to the server .

Access privileges . .
Paradox/server differences .
Working with remote tables

Performance

Queries

Concurrency
Errors on the database server

Using PAL to access SQL data .
Finding out more about your server

Chapter 3
A quick tour

Starting Paradox SQL Link .
Selecting a server connection

QGO s WWwWw N ==

11
11
12

12
13
13
14
15
16
18
18
18
19
19

20
20

21
22
22

CONTENTS

Creating a remote table

Entering data into a remote table .
Querying a remote table

Viewing the SQL translation of your
query .

Adding records from one table to another .

Reporting on data in a remote table
Copying a remote table
Transaction processing

Emptying a remote table .
Deleting a remote table

Chapter 4
UseSQL, the SQL command editor
Starting UseSQL .
Connection menu
File menu .
Creating a SQL statement .
Renaming a UseSQL card .
Navigating between cards .
Editing SQL statements

Edit menu .

Search menu .
Executing a SQL statement
Leaving UseSQL .

Learning more about SQL

Chapter 5
Menus
Ask .
Multiple Query forms
SQL query operators
Transaction processing and querles
Displaying your SQL query .

Contents

23
25
26

27
28

29
30
31
32

33

34
34
35
36
36
37
37
38
39

. 40
. 41
. 41

43

. 43
. 44
. 45

47
47

Saving your query .
Report
Create
Modify | DataEr\try
Forms

Tools .
Copy .
Delete
SQL
Connection .
Select
Make
Break
Clear
Transaction .
Commit
RollBack
Start
ReplicaTools
Rename

Copy .
Delete .

SQLSave

Preferences .
AutoCommit
SetInterrupt .

More .

Add

Empty

Protect

Chapter 6
PAL commands and functions

Using SQL Link with PAL

SQL Link PAL commands and functlons

Error handling
Transaction processing

Organization and notation
Notation

ADD .
COPY
CREATE
DELETE
EMPTY .

ii User’s Guide

71

71
72
73
74

76
77

79
80
82
83
84

ERRORCODE()
ERRORINFO
ERRORMESSAGE() .
ISSQL()
MENUPROMPT()
QUERY

REPORT

SHOWSQL .
SQL...ENDSQL
SQLAUTOCOMMIT
SQLBREAKCONNECT
SQLCLEARCONNECT
SQLCOMMIT .
SQLCONNECTINFO()
SQLERRORCODE()
SQLERRORMESSAGE()
SQLFETCH
SQLISCONNECT() .
SQLISREPLICA(
SQLMAKECONNECT
SQLMAPINFO() .
SQLRELEASE . o
SQLRESTORECONNECT
SQLROLLBACK .
SQLSAVECONNECT
SQLSELECTCONNECT
SQLSETINTERRUPT
SQLSTARTTRANS
SQLVAL(

Chapter 7
The SQL Setup program

When to use SQL Setup
Creating replicas .

Customizing server connectlons

SQL Setup function keys .
Before you start SQL Setup

Starting SQL Setup .

. 85
. 87
. 88
. 88
. 89
. 90
.9
. 92
. 93
. 96
. 98
. 99

100
101
103
104
104
106
107
107
109
110
111
111
113
114
115
116
17

121

121
122
122
123
123

124

Connection .

Selecting a connection .

Customizing a connection . .
Connection names, descriptions, and
parameters . .

Adding a new connechon

Saving connection data

Password protection for system
administrators .

Password protection for your personal
PARADOX.DSQ

Customize connection reports .
Printing reports .
Saving a connection list as a table .

MakeReplicas

Searching for User and System tables

Selecting tables to replicate .

Converting numeric fields to currency

fields .

Naming replicas .

SQL Setup reports .

Sending a report to the screen
Sending a report to the printer .
Sending a report to a file

Saving a replica list as a table

Exit

Chapter 8
The sample application
PAL applications and the SQL
environment . .
Common approaches to bulldmg SQL
Link applications .

Sample approach A

Sample approach B .
The SQL sample application
Installation . .
Starting the sample apphcat1on

The Main menu . . .
A closer look at the scripts used by the
SQL sample application -

Error handling .
Viewing customer mformatlon

. 124
. 126
. 126

. 127
. 128
. 129

. 130

. 131
. 131
. 131
. 132

. 132
. 133
. 134

. 135
. 136
. 137
. 137
. 138
. 138
. 138

. 139

141

. 141

. 141
. 142
. 142

. 142
. 145

. 146
. 148

. 148
. 148
. 148

Adding, deleting, and editing customer
information .

Closing the customer table

Entering orders

Printing records .

Printing the West Coast records
Graphing orders .

Creating a crosstab report

Changing the discount percentage

PAL and SQL commands .
Glossary

Index

Contents

149
151
151
152
152
152
153
153

153

155

159

TABLES and FIGURES

Tables

1-1 Printing conventions .

1-2 Syntax notation .

2-1 Server privileges needed for remote
operations

3-1 Sampords e

4-1 UseSQL Connection menu options .

4-2 File menu options .

4-3 Table editing keys

4-4 Edit menu options

4-5 Search menu option .

5-1 Supported SQL Link QBE operators

5-2 Paradox QBE operators not supported
on remote tables .

5-3 Differences between Delete and Empty
operations

6-1 PAL commands used w1th Paradox
SQL Link . .

6-2 SQL Link PAL Commands .

6-3 SQL Link PAL functions

6-4 PAL SQL variables

6-5 PAL SQL keywords

6-6 Paradox error codes for the SQL
environment .

6-7 ERRORINFO array elements .

6-8 LClients table

7-1 SQL Setup menu options .

7-2 SQL Setup Connection menu options .

7-3 Customize connection key operations

User’s Guide

oY)

15
26
34
35
38
39
39
45

47

70

72
72
73
78
78

86
87

. 119
. 124

125
127

Figures
2-1 Paradox SQL Link in a client/server
system10
22 Paradox SQL Lmk ina mxmcomputer or
mainframe environment 10
2-3 The Show SQL Query screen 13

CHAPTER 1

Introduction

Paradox SQL Link lets you access data stored on SQL database
servers using the familiar Paradox menus and the power of the
Paradox Application Language (PAL).

Paradox 4.0 and SQL Link work together so that you can work with
data stored on many database servers. SQL Link lets you work as
you have in the past, using Paradox interactive menus and
specialized PAL programs, and also lets you access remote SQL
tables. You now have the power of SQL at your fingertips, without
needing to learn SQL programming.

Structured Query Language (abbreviated SQL and commonly
pronounced sequel) is the standard language for storing and
manipulating data in relational databases. SQL database servers run on
local area network (LAN) file-server systems, minicomputers, and
mainframes. SQL database servers are often installed on dedicated,
powerful machines that store and process large amounts of data
quickly. A database server not only provides file sharing but also
serves as an intelligent “back end” for user applications. Security
constraints, data integrity rules, concurrency, and transaction
processing are all handled by the database server.

Paradox SQL Link serves as the “front end” to the database server.
When you query a database server, the query is processed on the
server, and only the data you requested is returned to SQL Link.

Overview of SQL Link features

Following are some of the features SQL Link adds to Paradox. With
Paradox 4.0 and SQL Link, you can

3 run queries on SQL data using Paradox’s powerful
query-by-example (QBE) features

Chapter 1, Infroduction 1

0 Paradox translates your query to a SQL statement you can
display onscreen and save in a PAL script.

3 You can treat the resulting local table as you would any other
Paradox table.

create new tables on database servers and access existing remote
tables

manipulate data on database servers (add, copy, empty, and
delete)

create powerful PAL applications to access SQL data

run SQL statements from within your PAL application or as a
miniscript

apply transaction processing techniques to protect the integrity of
your SQL data

handle errors that occur on database servers

access multiple servers in a single Paradox session

What's changed in this version?

2

User's Guide

Since its last release, Paradox SQL Link has been improved in the
following ways:

o

When you connect to a remote database, Paradox no longer
requires an additional user count for server connections.

SQL Link now works with the run-time version of Paradox.

SQL Link features an improved SQL Setup program (see Chapter
7 for details).

The SQL Setup and UseSQL programs are now available from the
= (System) | Utilities menu.

Paradox SQL Link supports new connections to DEC VAX
Rdb/VMS, IBM’s DB2, and Novell NetWare SQL.

This version of Paradox SQL Link incorporates the latest vendor
libraries.

How to use this hook

Printing conventions

The Paradox SQL Link User’s Guide is a general guide for using SQL
Link. You should also read the addendum describing your specific

server environment, which guides you through installing SQL Link
and troubleshooting problems.

The Paradox manuals use special typefaces to help you distinguish
between keys you press, names of Paradox objects, menu commands,
and text you type. Table 1-1 lists these conventions.

Table 1-1 Printing conventions

Convention
Bold

Italic

ALL CAPS

Initial Caps

Keycap font

Monospaced
font

Type-in font

Applies to

Any message displayed by
Paradox

Tables, scripts, procedures,
arrays, variables, glossary
terms, emphasis, example
elements

DOS files and directories,
reserved words, operators,
PAL commands, SQL
statements

Fields, menu commands,
object names, applications,
libraries

Keys on your computer’s
keyboard

PAL code examples

Text that you type in

_ Examples

Paradox disé@s Creating
remote table...

Orders table, DoWait
procedure, the Retval
variable, array a

PARADOX.EXE, LIKE,
SORT

Stocks application, Price
field, Tools | SQL

F2, Enter

SETKEY "F1" SORT

TABLE() ON FIELDC()
=6/2/90, sampord

In addition, Chapter 6 of this book uses the syntax notation described

in Table 1-2.

Chapter 1, Introduction

3

What to read before
you use SQL Link

4

User’s Guide

Table 1-2 Syntax notation

Convention Element Examples ~ Meaning -

ALL CAPS Keyword SHOWMENU Type exactly as shown.

Italic Fill-in TableName Replace with expression.

| Choice { VARS | PROCS} Choose one of the elements
separated by the vertical bar.

[1 Optional [OTHERWISE] You can choose whether to
include this.

1}

Required { VARS | PROCS} You mustchoose one of the
elements separated by the
~ vertical bar.

To install SQL Link on your network or workstation, read your
server-specific addendum. Database administrators or Paradox users
can install SQL Link.

In addition,

0

To learn the basic concepts necessary to use Paradox with SQL
Link, read Chapter 2.

If you are new to Paradox, read Chapter 1 of the Paradox Getting
Started manual and Chapters 1 and 2 of the Paradox User’s Guide
for a quick introduction.

If you're familiar with Paradox, read Chapter 3 in this book for a
brief hands-on tutorial of SQL Link’s capabilities, and Chapter 5
for information on accessing remote data through the Paradox
menus.

If you are new to SQL, refer to the Glossary for an understanding
of basic terminology.

To create replicas for tables that already exist on your database
server, read Chapter 7.

If you are a database administrator, read this entire manual,
paying particular attention to Chapters 4 and 7. Chapter 4
contains information on sending SQL statements directly to the
server. Chapter 7 provides information on accessing tables that
already exist on your database server and on customizing the
communication links between Paradox and your database servers.
In addition to this manual, you should also read your
server-specific addendum.

If you are a PAL application developer, you should read this
entire manual to gain a full understanding of SQL Link, paying
particular attention to Chapters 4, 6, and 8. In addition to this
manual, you should also read your server-specific addendum.

How to contact Borland

Registering your copy
of SQL Link

To register your copy
800-8450147
(U.S. and Canada)

Resources in your
package

Borland resources

Techfax
800-822-4269 |voice)
(U.S. and Canada)

Borland offers a variety of services to answer your questions about
SQL Link. These services are available in every country where SQL
Link is sold and vary from country to country. For the most
up-to-date information on contacting Borland in your country, see the
brochure on registering your product, which is included in your SQL
Link package.

To register your copy of SQL Link, complete and return your
registration card. You can also register by calling 800-845-0147 (within
the U.S. and Canada) or by contacting your local Borland
representative (elsewhere).

When you register, you immediately become eligible for:

O Free access to Borland’s world-class technical support. (Technical
support is free unless the product was purchased under a
program that specifies otherwise. You must pay telephone toll
charges on technical support calls. Support, upgrade, and product
information policies are subject to change. These terms and
conditions are for U.S. and Canadian customers only.)

0 Advance notice of new versions and special prices.

Information on Borland database development and product
enhancements, as well as information on other new Borland
products.

Your SQL Link package contains many resources to help you:

o The manuals provide information on every aspect of the program.
Use them as your main information source.

0 While using the program, you can press F1 or click 7 Help in the
SpeedBar for help.

0 Many common questions are answered in the README file
located in the system files directory. Additional online information
files on specific topics might also be included. The manuals refer
to these files where appropriate.

Borland Technical Support publishes technical information sheets on
a variety of topics and is available to answer your questions.

TechFax is a 24-hour automated service (available in the U.S. and
Canada) that sends free technical information to your fax machine.
You can use your touch-tone phone to request up to three documents
per call.

Chapter 1, Introduction 5

File Download BBS
2400 Baud, 8, N, 1

Online information services

Paradox Technical Support

Paradox Technical Advisor
Q00-555-1000 [voice)
(U.S. only)

Information you need when
you call support

User’s Guide

The Borland File Download bulletin board system (BBS) has sample
files, applications, and technical information you can receive by using
your modem. No special setup is required.

Country) Modem number
U.S. and Canada 408-439-9096
Australia (02) 953-9630

Worldwide subscribers to the CompuServe, GEnie, or BIX
information services can receive technical support by modem. Use
the commands in the following table to contact Borland while
accessing an information service.

Service Command
CompuServe GO BORLAND

BIX JOIN BORLAND
GEnie BORLAND

Address electronic messages to Sysop or All. Don’t include your serial
number; messages are in public view unless sent by a service’s
private mail system. Include as much information on the question as
possible; the support staff will reply to the message within one
working day.

Paradox Technical Support is available weekdays during business
hours to answer any technical questions you have about Paradox.
Country Phone number

U.S. and Canada 408-461-9155
6 a.m. to 5 p.m. Pacific time

0734 320777
(02) 953-9500

UK.
Australia

When you need an instant answer or a more advanced level of
technical support (within the U.S.), you can call Borland’s Technical
Advisor service at 900-555-1000. You gain access within one minute.
Each Technical Advisor call is $2.00 per minute (the first minute is
free).

When you call Technical Support, call from a telephone near your
computer, and have the program running. Keep the following
information handy to help process your call:

0 product name, serial number, and version number
0 the brand and model of any hardware in your system

O operating system and version number (Use the DOS command
VER to find your DOS version number.)

0 contents of your AUTOEXEC.BAT and CONFIG.SYS files (located
in the root directory (\) of your computer’s startup disk)

0 a daytime phone number where you can be contacted
O if the call concerns a problem, the steps to reproduce it

You can also send support inquiries by fax or the postal system. For
addresses and fax numbers, see the brochure on registering your
product. Be sure to include the information listed in the preceding
section.

Customer Service Borland Customer Service is available weekdays during business
hours to answer any non-technical questions you have about Borland
products, including pricing information, upgrades, and order status.

Country Phone number
us. 408-438-5300
7 a.m. to 5 p.m. Pacific time
Canada 416-229-6000
UK. 0734 320022
Australia (02) 953-9500

Chapter 1, Introduction 7

8

User’s Guide

CHAPTER 2

Fundamentals

This chapter introduces you to the fundamentals of SQL Link. With
an understanding of these basic terms and concepts, you'll be able to
use Paradox more effectively to work with data on your database
server.

The SQL environment

SQL database servers are multiuser relational database management
systems (RDBMS), based on what is called client-server architecture. In
this environment, end-user programs like SQL Link are executed on
workstations, while the RDBMS (including processing, integrity
control, and security) is executed on the database server. Data is stored
on a central machine (the database server), and users access the data
from workstations (the clients) connected to that machine. Some
database servers can run in a local area network (LAN) environment,
such as OS/2, as well as in other multiuser environments, such as
UNIX or VMS. If you would like to learn more about your database
server and its specific environment, refer to your server manuals.

In an OS/2 LAN environment, a database server can double as a
network file server or as a client, but is often a dedicated machine. As
on a LAN without a database server, several people can access the
same file at the same time to query the data, add or change
information, and print reports. Only SQL applications can directly
access SQL data. The SQL clients can, however, share the retrieved
data with all other clients on the network.

An example of a LAN server paired with a dedicated database server
is shown in Figure 2-1.

Chapter 2, Fundamentals 9

10

User’s Guide

Note

Figure 2-1 Paradox SQL Link in a client/server system

0S/2 DOS or
database 0S/2 file L
server server Blue lines indicate
SQL access.
Paradox Other SQL Quattro Paradox SideKick Paradox
4.0 with application Pro 4.0 PM Engine
SQL Link . - . . application
Windows or DOS client DOS client 0S/2 client
DOS client 0S/2 client DOS client

Paradox SQL Link can also directly access a supported RDBMS on
your minicomputer or mainframe, as shown in Figure 2-2. A file
server (not shown) is also often included in this type of system.

Figure 2-2 Paradox SQL Link in @ minicomputer or mainframe environment

Minicomputer or
mainframe RDBMS

Paradox SQL Other SQL Other SQL
Link application application
DOS client Windows or UNIX, VMS, etc.
08S/2 client client

Both SQL and Paradox databases are based on the relational model.
Consequently, Paradox concepts and SQL concepts are very similar.
On a SQL database server, information is organized in much the same
way as in Paradox. Data is stored in tables. Tables consist of rows
(records) and columns (fields). A table can have one or more indexes,
which organize the information according to one or more fields (key
fields) and make the data more quickly and easily accessible.

Throughout this manual, SQL tables are called remote tables, and
Paradox tables are called local tables.

As in the Paradox multiuser environment, tables on database servers
are often protected with passwords to prevent unauthorized access.
SQL Link prompts you for your user name and password only when
necessary. Once you're connected, you need the proper access

The database
administrator

Transaction processing

rights—or, as they’re known in most server environments,
privileges—on your server to see or change data in a remote table.
Your database administrator should give you details on your logon
and access privileges.

The following sections describe some basic database server concepts
that you might find helpful when working with SQL Link. You'll find
server-specific information in the addendum accompanying this
manual.

Managing a database server requires someone to fill the role of the
database administrator (sometimes referred to as the system
administrator). The database administrator is responsible for
maintaining user accounts (user names, passwords, access privileges,
and so on), managing storage, and ensuring the accuracy and
integrity of data stored on the server. Because they are responsible for
data integrity, they often provide guidelines for program
development. Your database administrator can assist you with any
questions you have about your server.

SQL database servers handle requests in logical units or transactions.
A transaction is a series of operations that must all be successfully
performed before any changes to the database can be saved.

A good example of high-end transaction processing is an automated
teller machine (ATM) transaction. Suppose you go to your ATM to
transfer funds from your savings account to your checking account.
Together these two operations are considered a single transaction
because they're logically inseparable: You subtract a value from your
savings account, then add that value to your checking account. You
(and the bank) want to perform both of these operations or neither of
them. If both operations succeed, then the transaction is successful; if
either operation fails, the entire transaction fails.

Transaction processing ensures that your processing requests don’t
compromise data integrity. Database servers generally employ a
write-ahead log to record changes you make to tables before actually
writing them to disk. This log lets you accumulate related changes to
remote tables until you're ready to save them. You can commit, or
save, the changes when you're satisfied that no errors occurred
during the transaction. If an error occurs, you can roll back, or
abandon, the changes rather than save only some of the operations in
the transaction. Issuing a COMMIT or ROLLBACK command
concludes the current transaction.

SQL Link automatically commits changes immediately before and
after certain operations (such as when you create, copy, or delete a
table on the database server). Servers handle transaction processing

Chapter 2, Fundamentals 11

Nulls

Note

In various ways. Some servers begin a new transaction automatically
when you start your remote session or end a transaction, while others
require that you do so explicitly. See your server-specific addendum
to find out how your server handles transaction processing. You can
also ask your database administrator to tell you when it's appropriate
to use SQL Link commands to control transaction processing.

For more information about transaction processing commands, see
the discussion on Tools | SQL | Transaction in Chapter 5, the
“Transaction processing” section in Chapter 6, and your server
manuals.

SQL supports a field value referred to as null. Nulls have no explicitly
assigned values; they are not blank values or zero values. Null values
are not equal to any other value, including another null value. A null

value means “value unknown.”

You may come across a remote table that has been defined with null
(and non-null) fields. A null field means that the field does not
require a value. If an entry is not made, the value NULL is entered
into the field automatically. A non-null field requires that a value be
entered in that field. You'll get a server error message if you try to
leave a non-null field blank when entering data into a remote table.

When SQL Link creates remote tables, it creates fields that allow
nulls. If you don’t want the remote table to allow nulls, create the
table using passthrough SQL and replicate it using SQL Setup.

If you're a PAL programmer, see SQLVAL() in Chapter 6 for more
information on how to handle nulls in PAL expressions.

Using Paradox to access SQL data

12

User’s Guide

All programs in the SQL environment use SQL to communicate with
database servers. Although different kinds of servers use different
SQL dialects, SQL Link translates your requests into the appropriate
SQL dialect. You can use SQL Link with different servers without
learning all the SQL differences among server products. Special
Paradox tables called replicas let you access remote tables in the same
way you access local Paradox tables (see the discussion of replicas
later in this chapter).

You don’t have to learn SQL to access data on a SQL database server.
Instead, you can use the Paradox menus and PAL to perform
operations on remote tables.

Accessing existing data

Querying remote tables

Replicas

To access data that already exists on your server, use the SQL Setup
Program to create replicas for the existing tables (see Chapter 7 of this
manual). You can also access existing tables with passthrough
SQL...ENDSQL commands or with UseSQL, the SQL command
editor.

Querying a remote table is as easy as querying a local Paradox table:
Choose Ask from the Paradox Main menu and select the remote table
from a list. Next, fill out the Paradox Query form, specifying criteria
to select the data you want to retrieve. Then, press F2 Do _It! to
process your query.

Any time you have a remote query on the workspace, Alt-f2
ShowSQL shows you the SQL statement executed against the
database server (see Figure 2-3).

Figure 2-3 The Show SQL Query screen

SAMPORDS Order#

SQL Query

(il SELECT DISTINCT Order#, CustID, Quant, Orddate
f FROM jlee.SAMPORDS

il WHERE
i (Quant > 5)

| AND (Orddate > TO DATE('09/04/1989', 'MM/DD/YYYY'))

i ORDER BY Order#, CustID, Quant, Orddate DESC

Viewing SQL query; press y key to continue

If you prefer to build queries in SQL, SQL Link lets you write SQL
statements and send them directly to your server. For more
information, see Chapter 4, the discussion on Tools ISQL | SQLSave in
Chapter 5, and the discussion on SQL...ENDSQL in Chapter 6.

You can still work with data stored in Paradox tables on your local
hard disk, floppy disk, or file server (local tables). SQL Link also lets
you access data in tables that reside on the database server (remote
tables) in the same Paradox session.

To let you access remote tables as easily as local tables, SQL Link uses
a special type of table called a replica to locate the remote table and to
transfer data between Paradox and the database server. Replicas do
not contain actual data. Instead, they contain the information

Chapter 2, Fundamentals 13

Creating remote fables

Connecting to the
server

14

Default server connection

User’s Guide

necessary for SQL Link to connect to the database server on which
the table resides, and to work with the data in that table.

In most cases, you can treat replicas as if they were regular Paradox
tables. For example, to access a remote table from a Paradox menu,
type its replica name or choose the replica from a list. If you choose it
from a list, you'll see the replica name in the list box and the replica
connection name highlighted below.

Similarly, to access a remote table from a PAL script, use its replica
name in the PAL command. For example, to add records from a local
table to a remote table, specify the replica name of the remote table:

ADD "Loctable" "Myreplca"

Whenever you use SQL Link to create a remote table on your
database server (either by choosing Create or Tools | Copy from
Paradox menus, or by using CREATE or COPY in a PAL script), SQL
Link automatically creates a replica of it with the same name.

Table names on database servers can be more than eight characters.
Due to DOS limitations, replica names cannot exceed eight characters.
When you use SQL Setup to create replicas for existing SQL tables,
SQL Link truncates remote table names to eight characters and uses
this name for the replica. If more than one table on the server shares
the same name or the same first eight characters, SQL Link resolves
the problem by truncating the duplicate names, then adding a
hyphen and a sequential number. SQL Link provides you with a list
of tables it renames in this manner.

For more information about replicas and accessing tables that already
exist on your server, see Chapter 7.

SQL Link manages the communication session with your server so
you can focus your attention on working with your data. SQL Link
connects to the server automatically through replicas whenever you
need to access remote data. You don't even need to know where the
table is located; SQL Link makes the server connection and finds the
table for you. This type of connection is called a replica connection.

Before you create a new remote table (for example, when you use
Tools | Copy to create one) or use SQL Setup to create replicas for
existing SQL tables, however, you need to explicitly connect to the
server so that SQL Link can communicate with the server and create
the necessary replica. Except for these operations, you don’t need to
explicitly select a server connection, as the replica connection can be
used.

SQL Link comes with a default server connection for each supported
server, and displays its title and description when you work with a

Access privileges

remote table. A connection identifies the type of server and its SQL
dialect.

Additionally, each server connection contains information that you
supply, such as user name and server name. Your server requires
these connection parameters for access. SQL Link prompts you for your
user name and password only when

O You connect to a server for the first time in a session.
0 You change connections to access data in a different location.

For more about the connection parameters for your particular server,
see your server-specific addendum. Your database administrator can
assist you with the exact information required to access your
database server.

Although you can use the standard connections that come with SQL
Link, you can also create custom connections for individual users,
groups of users, or different applications. For example, you might
want to create a connection to let the Marketing Department access
the Sales Department data. To add a custom connection to the list of
server connections, use the SQL Setup Program. For more
information, see Chapter 7.

You must have the proper access privileges on your server to use
remote tables. Database servers support sophisticated security with
different levels of access based on your user name, group, and
password. Neither SQL Link nor Paradox can override your server’s
security.

Table 2-1 lists the specific privileges you need on your server for each
remote Paradox operation.

Table 2-1 Server privileges needed for remote operations

Paradox command Server privileges needed
Ask SELECT
INSERT query INSERT
DELETE query DELETE
CHANGETO query UPDATE
CreatelRemote CREATE TABLE
CREATE INDEX *
ModifylDataEntry INSERT
Tools!DeletelTable DROP TABLE
DROP INDEX*
ToolsIMorelAdd SELECT
UPDATE
INSERT

Chapter 2, Fundamentals 15

Paradox/server
differences

Note

Short number and currency

16

field types

Rules for indexing

User’s Guide

Paradox command Server privileges needed
ToolsIMorelEmpty DELETE
Run SQLSetup SELECT

* Needed only if you are creating indexed tables

SQL Link requires additional privileges on some servers. See your
server-specific addendum for information.

To maintain security on your server, SQL Link prompts you for your
user name and password when necessary. If you don’t have access
privileges for a particular operation, the database server won't let
you proceed, and SQL Link provides a message to inform you of the
problem. To obtain the necessary access privileges on your database
server, see your database administrator.

Your database server might have different rules for naming tables
and fields, and might support different field types than Paradox. For
example, even though you can use a hyphen (-) in a Paradox table
name, some servers don’t allow this character in a remote table name.
Similarly, you can use spaces in a Paradox field name, but not in a
remote table field name. In addition, some servers may be case
sensitive to table and field names. Paradox always creates tables
using all uppercase letters, and field names using initial uppercase
letters. You need to conform to the table- and field-naming rules of
your database server as well as Paradox rules when you create a new
remote table using SQL Link. The most common differences are
covered in detail in your server-specific addendum.

Memo field types in remote tables are not supported; remote fields
longer than 255 characters are truncated to 255. Other restrictions
apply to certain servers; see your server-specific addendum for
details.

Not all servers support the Paradox short number (S) or currency (%)
field types. If you create a replica in SQL Setup for a remote table on
a server that does not support currency field types, for example, SQL
Link converts Paradox field types to the most similar supported field
type. It then prompts you to decide if it should interpret that table’s
numeric columns as containing currency values.

If you are creating a remote table, SQL Link creates a replica that
allows it to map local to remote field types. Even though Paradox can
treat remote numeric data as currency values, the data in the remote
table is never affected by this mapping.

Your database server might also have different rules for creating
indexes than those used by Paradox. A Paradox-compliant index is a
unique index based on one or more consecutive fields (keyfields),
beginning with the first field in the table and proceeding

Note

consecutively to the last field in the index. For local tables, Paradox
uses one main index (the primary key). In contrast, on most database
servers you can specify any field or group of fields as an index
(unique or non-unique), regardless of its location or whether the
fields in the index are consecutive.

Indexes are used to identify records and ensure that records added to
or updated in a table won’t have the same value in key (or uniquely
indexed) fields. See the Paradox User’s Guide for more on how
Paradox uses indexes to update Paradox tables.

If unique index violations occur (which Paradox calls key violations)
when you add records to a remote table with a unique index, SQL
Link produces a local Keyviol table containing the duplicate records.
(Rows which the server does not allow you to insert or update in a
server table for other reasons (such as values out of range, and so on)
are placed in a Problems table.

Some database servers do not return a specific error for insert or
update failures due to unique index violations. In that case, the rows
that could not be inserted or updated are placed in a Problems table.

When you create an index for a server table at the same time you
create the remote table (using Create | Remote), you can only create
indexes that follow Paradox rules for defining indexes on consecutive
key fields of the table. You can still create other types of indexes on
remote tables using the SQL...ENDSQL command to directly execute
SQL statements (such as CREATE INDEX) against a particular server.
For example, you might want to create other types of indexes to
improve the performance of queries. Only those indexes that comply
with Paradox indexing rules become part of a replica’s structure if
you use SQL Setup to create a new replica on the server table.

When using SQL Setup, SQL Link evaluates the unique indexes
available on the server for a particular table (if any exist). The criteria
that SQL Link uses in selecting a unique index to add to a server
table replica is the following:

1. Unique indexes used by Paradox must be based on consecutive
fields, starting with the first field of the server table. The index
must include all fields from the first field in the table structure to
the last field included in the index. (Indexes on memo fields are
not allowed.)

2. If more than one unique index qualifies, the index based on the
fewest number of fields is selected.

Having a unique index available on a remote table is only required
for table updates (using Tools | More | Add | Update), since Paradox
uses the index to uniquely identify a row. You can perform all other

Chapter 2, Fundamentals 17

Working with remote

tables

Performance

Queries

18

User’s Guide

operations, such as creating and displaying queries, and adding or
deleting rows, without an index.

A database server processes your requests in a different manner than
Paradox. At times you won't have the same level of control over
remote operations that you have in the normal Paradox network
environment. The following sections describe some of these situations.

While Paradox delivers your request to the server, the server decides
the order in which it processes your request. Several factors affect the
speed with which a database server returns results:

0 the number of users accessing data on the server at the time you
make your request

3 the level of traffic on the network and on the communication link
between Paradox and the server

the degree of multiuser concurrency supported by your server

the size of the tables you are accessing and the complexity of your
request

O use of indexed fields in queries, joins, and so forth
O user priority (queues)

If you think your remote operation is taking too long, press Ctrl-Break
to stop it.

When you're querying remote tables, you rely on the database server
to process your request along with the requests it receives from all
other users. Because the database server can give you access to vast
amounts of data, you should be aware of the limitations of your local
environment. You might want to do some aggregate queries first to
estimate the size of a remote table. For example, a CALC COUNT
ALL query returns the number of records in the remote table, and a
CALC COUNT returns the number of records that your selection
would report.

Normally, SQL Link generates your SQL statements for you, but you
can create your own and send it directly to the server by enclosing it
ina SQL...ENDSQL command (a technique called passthrough).

There are several reasons why the database server might not process
your query at all:

0 The server does not support your query statement. In this case,
you'll get an immediate message from SQL Link.

Changed tables

Deleted tables

Inserted tables

‘FAST" queries

Concurrency

Errors on the database
server

0 The structure of the remote table has changed since you created
the replica, and you'll need to regenerate the replica (see Chapter
7 of this manual for more information). In this case, you'll get a
Server error message.

0 You don’t have sufficient access privileges. In this case, you'll get
a message from the server. Consult your database administrator
about obtaining the appropriate privileges.

When you perform a CHANGETO query in QBE, a Changed table is
not created as it would be in native Paradox.

When you perform a DELETE query in QBE, a Deleted table is not
created as it would be in native Paradox. To find out how many
records will be deleted by a DELETE operation, run the QBE
DELETE query against the remote table, but omit the DELETE
keyword in the leftmost column.

When you perform an INSERT query in QBE, an Inserted table is not
created as it would be in native Paradox.

Paradox 4.0 has a FAST keyword, which skips making Changed,
Inserted, or Deleted tables for those types of queries. Since these tables
are never created for remote queries, this keyword has no effect.

Your server controls all implicit locks. Therefore, your database server
might deny you access to remote data because another user is
accessing the same remote tables you want to access. In these
instances, SQL Link must wait until the user or the server releases the
locks on those tables. Deadlock occurs when two users hold locks on
data required by the other; neither transaction can complete before
the other’s tables or records are unlocked. Each server has its own
deadlock detection and recovery procedure that, in most cases, results
in one of the user’s queries being canceled. For more information on
deadlock recovery procedures, refer to your server manuals.

To help you find the source of errors that occur during a server
transaction, SQL Link returns an error message and an error code
(error codes are returned only to PAL applications). For errors specific
to your database server, see your server manuals to find out how to
correctly process your query.

If the remote error occurs while you're running a PAL script, you can
recover from the error from within your application using the normal
PAL error-handling methods. SQL Link lets you retrieve the error
codes and messages from the database server (as well as Paradox’s
Own error messages).

For more information on how to handle these messages, see the
“Error handling” section in Chapter 6 of this manual.

Chapter 2, Fundamentals 19

Using PAL to access SQL data

You can enhance existing PAL applications to take advantage of SQL.
For example, you can share data with other users and applications;
you can cut down on network traffic by sending only SQL requests
and Answer tables over the network; and you can enable users to
connect to multiple servers during a single Paradox session. For more
information, see Chapter 6.

Finding out more about your server

20

User’s Guide

Throughout this manual, you'll be directed to your database
administrator or server manuals to learn how your database server
handles certain operations. Database servers function differently in
particular circumstances. Some of the more important differences are
discussed in your server-specific addendum.

Before you begin using SQL Link, you should obtain the following
information about your server:

O alist of the query operations that your server supports

O if your server begins a transaction automatically, or requires that
you do so explicitly

g a list of error codes and messages that your server produces when
an error occurs

O your access privileges on the server, including your user name
and password

You can find most of this information in your server-specific
addendum. In addition, you should learn how your server resolves
deadlocks by referring to your server manuals.

CHAPTER 3

A quick tour

This chapter takes you on a quick, hands-on tour of the Paradox SQL
Link menus. To take this tour, you should be familiar with the
Paradox menus and should have already read Chapter 2 of this
manual. If you are new to Paradox, read Paradox Getting Started and
Chapters 1 and 2 of the Paradox User’s Guide. You should spend some
time using Paradox before working with SQL Link.

This tour assumes that SQL Link is installed and running, and that it
can connect to the database server from your workstation. If you
need to install SQL Link, see the installation instructions in your
server-specific addendum. To test the connection, use your server’s
DOS-based diagnostic tools. Finally, ensure that you have privileges
to create, update, and delete files on your server. See your database
administrator to obtain the appropriate access privileges.

In this tour, you will use the Paradox menus to
connect to your database server
create a remote table on your database server

add data to the remote table

create a report of data on the remote table

0
]
a
O query the remote table
0
O copy the remote table to a local table
0

empty the remote table
O delete the remote table

This quick tour covers only a few of SQL Link’s features. For a
detailed discussion of each menu command, see Chapter 5 of this
manual. If you want to learn about using SQL-specific PAL
commands and functions, see Chapter 6. To learn how to use the SQL
Setup Program to access a remote table that was created with a
program other than Paradox, see Chapter 7.

Chapter 3, A quick tour 21

Starting Paradox SOL Link

With SQL

With international date
format

Without SQIL

Before starting Paradox, make sure you load the network
communication program required by your server (see your
server-specific addendum for details), and make sure your server is
running.

To start SQL Link, start Paradox from the Paradox system files
directory (usually PDOX40) with the following command:

paradox

If your server is an international (non-U.S.) server, specify the
international switch when you start Paradox

paradox -inflsql

This switch configures Paradox to convert dates to the international
date format DD.MM.YYYY. For more information, see “International
date format” in your server-specific addendum.

When you start Paradox, SQL Link is automatically activated. If you
want to run Paradox without using its SQL capabilities, however,
start Paradox with the following command:

paradox -sql off

Selecting a server connection

22

Tools

| Rename
QuerySpeed
|

ExportImport »
Copy >
Delete >
Info >
Net »
SQL »

L| Connection

User's Guide

Before you create a remote table, you'll need to connect to the server
on which the table will reside. You need to set an explicit server
connection only when you're creating a new remote table.

To select a server connection,
1. Choose Tools | SQL | Connection | Select from the Main menu.

SQL Link displays a list of available server connections. Only
those products that you installed (or customized with SQL Setup)
are displayed in this list.

SQL Cbnnecf1ons

Descri ption

Connection Name

Standard connection
Database Manager

1BM 0S/2 DBM

Standard connection
SYBASE SQL Server

Microsoft, SYBASE SQL Server

ORACLE Standard connection
VAX Rdb/VMS Standard connection

MDI Database Gateway to DB2 Standard connection

1BM 0S/2

Microsoft and

ORACLE

VAX Rdb/VMS

DB2 via MDI

Database Gateway

Move the cursor to the connection you want and press [F2] to select it.

2. Move the cursor to the server connection you want, then press 2
Do It! to select the connection.

This screen differs
depending on the
dalabase server you're
connecling fo. See your
serverspecific addendum
for information on
connection paramefers.

3. If SQL Link requires additional information for the connection
(such as your user name, password, or server name), type it in,
and press F2 Do_It! when you're finished.

Parameters

Remote user name
Password

Host @p:mis server

DO-IT! [F10] Menu

(F2]

For more about selecting a server connection, see the discussion of
Tools | SQL | Connection | Select in Chapter 5. For more information on
the connection parameters required by your server, see your
server-specific addendum and your server manuals.

Creating a remote table

Create

“local
Remate

Now you're ready to create a new table on the database server.
Creating a remote table is the same as creating a local Paradox table,
except the rules for field names and field types in remote tables differ
from those in Paradox tables. For example, servers don’t permit

Chapter 3, A quick tour 23

spaces in field names. For more information on the rules for your
server, see your server-specific addendum and your server manuals.
You cannot use Paradox or server-specific reserved words for table or
field names. See Appendix C of the PAL Reference and your server
manuals for a complete list of reserved words.

To create a remote table, follow these steps:
1. Choose Create from the Main menu.

2. There are two options: Local and Remote. Choose Remote to
create a remote table.

3. For the new table name, type sampords and press Enter.

Mdif ‘ e ms Tools Scr

OrderNum — FIELD TYPE
CustID , A : Alphanumeric.
StockNum ATl characters up to
Quant ’ max of 255 (ex: A9).
OrdDate
EmpNum . M : Memo. Alphanumeric
. characters, 240 maximum
display in table view.

N: Numbers with or
without decimal digits.

$: Currency amounts.

D: Dates in the form
mm/dd/yy, dd-mon-yy,
dd.mm.yy, or yy.mm.dd.

U:e * for key fie]d;
(ex: N*). Not memos.

When you're finished, press F2 Do_It! to create this remote table
and its index. SQL Link also creates its local replica (containing

structural and connection information) so it can find the remote
table later.

24 User’s Guide

For more information about creating a remote table, see the
discussion of Create in Chapter 5 of this manual. For general
information about creating tables, see Chapter 10 of the Paradox
User's Guide.

Modi fy

| Sort

| Edit
CoEdit

. DataEntry
MultiEntry
Restructure |

Index

Note

Entering data into a remote table

Choose Modify | DataEntry to enter data into a remote table. You can
enter data into a remote table just as you enter data into a local
Paradox table. SQL Link even detects key violations and puts
duplicate records in a local Keyviol table. If any other problems occur
(such as attempting to add a null value to a field in a remote table
that doesn’t allow nulls), SQL Link generates a local Problems table.

When Paradox creates remote tables, it creates columns that allow
nulls. If you don’t want the remote table to allow nulls, create the
table using passthrough SQL and replicate it using SQL Setup.

Now enter data into the remote table you've just created:
1. Choose Modify | DataEntry from the Main menu.
2. Press Enter to display a list of tables.

= View Ask Report (reate Modify Image Fforms Tools Script

| Sort

|| Edit -
- Cokdit

DataEntry

| Table

Sales
Sampords
Vols
Xchange

Select Sampords. When you select the remote table, SQL Link
displays the server connection it uses to find the remote table in
the message line at the bottom of the screen. Press Enter to choose
Sampords.

3. When you see the blank Entry table that corresponds to Sampords,
enter the records with the information shown in the following
table.

Chapter 3, A quick tour 25

Table 3-1 Sampords

OrderNum CustiD StockNum Quant Orddate EmpNum
2280 4277 130 1 4/22/87 775

3351 3266 519 1 1216/90 422

8070 6125 632 8 6/04/90 146

6235 2779 890 1 8/01/88 517

4. When you're finished, press f2 Do_It! to add these records to the
remote table.

For more information about entering data into a remote table, see the
discussion of Modify | DataEntry in Chapter 5.

Querying a remote table

26

This query selects records
with Quant > 5.

User's Guide

CEVTew Ask [Repprt Credte Medify Image

You can now query the data you’ve entered in this remote table. If
the database server finds records that satisfy your query, SQL Link
produces a local Answer table, which you can treat like any other
Answer table.

SQL Link lets you perform sophisticated Paradox queries on remote
data. Not all database servers support the full range of query
operators available in SQL Link. For more information, see your
server manuals and Tables 5-1 and 5-2 in Chapter 5 of this manual.

Query the data you've just entered by following these steps:
1. Choose Ask from the Main menu.

2. When SQL Link asks you to enter a table name, type sampords or
choose it from the list box.

3. Fill in the Query form as shown in the following figure. (To select
all records and all fields in Sampords, press F6 Checkmark with the
cursor in the leftmost field.)

e QUETrY SAMPOTds =
| Orddate

Quant

4. When you're finished, press F2 Do_It! to run this query. You now
see only those orders with quantities greater than five.

SAMPORDS | Order# CustID | Stock# ‘ | Orddate

Answer ===

() . S— S ———
[{ANSWER Order# | Stock# Quant Orddate |
1 | 8070 125 63 8 | 6 90

When you're finished viewing the Answer table, press Ctrl-F8
WinClose to remove it from the workspace.

For more information about querying a remote table, see the
discussion of Ask in Chapter 5 of this manual. For general
information about querying tables, see Chapter 5 of the Paradox
User’s Guide.

Viewing the SQL translation of your query

Alt-F2 SQL Link translates your remote query into the appropriate SQL
ShowSQL dialect for your server. Once you've written your query, vou can
press Alt-F2 ShowSQL if you want to see the SQL statement the server
receives and processes.

To see the SQL translation of the query you just ran in the previous
example, press A/t-F2 ShowSQI..

SQL Link displays your query as shown in this figure:

Tools Scripts Exit

. View Ask Report Create Modify Image Forms
SAMPORDS | Orders s

SELECT DISTINCT Order#, CustID, Stock#, Quant, Orddate, Emp#
FROM jlee.SAMPORDS
i WHERE

(Quant > 5)
ORDER BY Order#, CustID, Stock#, Quant, Orddate, Emp#

Once you're finished viewing the query, press any key to clear it from
the workspace.

Chapter 3, A quick tour 27

Adding records from one table to another

“Greats You can add all the records from a local table to a remote table or vice

Local versa, as long as the fields in the two tables are compatible. If the

‘ A target table is indexed and key violations occur, SQL Link produces a
Keywiol table.

Create a local table (to be the target table) named Sampordl with a
structure identical to Sampords by borrowing Sampords’ structure:

1. Choose Create | Local from the Main menu to create a local table.
2. For the new table name, type sampord1 and press Enter.

3. Press F10to display the Create menu.

Borrow FileFormat DO-IT! Cancel
[Re———————————————_ i ¥ L F TR FT TN K
Field Type

——— FIELD TYPES
: Alphanumeric.
characters up to
of 255 (ex: A9).

~: Memo. Alphanumeric
characters, 240 maximum
display in table view.

N: Numbers with or
without decimal digits

$: Currency amounts.
D: Dates in the form

mm/dd/yy, dd-mon-yy,
dd.mm.yy, or yy.mm.dd.

Use * for key fields
(ex: N*). Not memos.

4. Choose Borrow from the Create menu.
5. Type sampords or choose it from the list box.

6. Press F2 Do _It! to create the local table.

Touds: 7 Next, copy all the records from the remote table Sampords to the local
| Rename > | table Sampordl.
QuerySpeed I
i

ExportImport » .
oy, > 1. Choose Tools | More | Add from the Main menu.
| Delete >
! Info >
. Net »
SqQL >
More »
- Add
! MultiAdd
FormAdd
Subtract
Empty 1
Protect >
Directory
ToDOS

0 For the source table, type sampords, or choose it from the list
box.

- - J

o For the target table, type sampord1, or choose it from the list
box.

2. Choose NewEntries to add the records.

28 User’s Guide

SQL Link adds all the records from the remote table to the local table
and displays the local table Sampord].

Suppose you want to add the records from Sampord] back to
Sampords. If you choose NewEntries, SQL Link produces a Keyuviol
table because there are duplicate key values. If you choose Update,
SQL Link replaces the records in Sampords with all the records from
Sampord1. For more information about adding records to another
table, see the discussion of Tools | More | Add in Chapter 5 of this
manual.

Reporting on data in a remote table

Report
Output

¢ Design
Change

' RangeOutput

SetPrinter

-

You can use Paradox and SQL Link to design and print reports on
data in a remote table.

To print a standard report for the remote table Sampords,
1. Choose Report | Output from the Main menu.
2. For the table name, type sampords, or choose it from the list box.
3. Choose R to print the standard report.

4. Choose Printer to send the report to the printer or Screen to view
the report onscreen.

When you print a report to the screen, you can select Cancel | Yes or
click on the close box to stop viewing the report. For more about
reporting on remote tables, see the discussion of Report in Chapter 5
of this manual.

Copying a remote table

R
| Rename

Tools

| QuerySpeed
. Exportlmport
| Copy

| Table
| i Form

| Report

|1 Script

¢ JustFamily

| Graph

vey

yv
|

You can copy data to or from a remote table. Follow these steps to
copy the structure and data of the remote table Sampords to a new
remote table named Sampord2:

1. Choose Tools | Copy | Table from the Main menu.

2. For the source table name, type sampords or choose it from the list
box.

3. Choose Remote to copy to a remote table.

Chapter 3, A quick tour 29

View Ask Report Create Modify Image Forms Tools Scripts Exit

| Rename
. QuerySpeed
: Exportlmport
| Copy

Table: JFEIITIEH
Sales

Sampords

Vols ‘
Xchange

=| Local
Remote

F1 Help opy to a remote tabl

4. For the target table name, type sampord2 and press Enter.

If you copy a local table to a remote table, the local table’s naming
conventions must conform to your server’s rules (see your
server-specific addendum). For more information about copying
tables, see the discussion of Tools | Copy in Chapter 5 of this manual.

Transaction processing

differently; some start a transaction for you automatically while
others do not. See your server-specific addendum for more
information.

Tools SQL Link makes use of the transaction-processing facilities of your

| Rename » database server, allowing you to define a transaction. For each
 Brporiimport :t transaction, you determine whether you want to commit the changes
| Gobdte . (if the operations were successful), or roll back the changes (if errors
| égEO v occurred during processing). Servers handle transaction processing

| &

>
Transaction »
ReplicaTools »
SQLSave

| Preferences >

L

[Connection
|

SQL Link normally commits each change to a remote table
automatically. To do this manually, you need to turn AutoCommit off.
Here’s how:

1. Choose Tools | SQL | Preferences | AutoCommit from the Main
menu.

2. Choose No to turn AutoCommit off.

Next, choose Tools | SQL | Transaction | Start to start a transaction. On
servers that don’t require that you start transactions explicitly, this
command is ignored. Now, add two new records to the remote table
Sampords:

1. Choose Modify | DataEntry from the Main menu.

30 User’s Guide

2. Type sampords for the name of the table.
3. Enter two new records.
4. Press F2 Do_It! to add the records.

At this point, you haven’t committed the changes. If you query the
table, however, you see the new records you've added. To save these
new records in the remote table, choose Tools | SQL | Transaction !
Commit from the Main menu. SQL Link saves your changes on the
server and ends the transaction.

Now suppose you decide to abandon the changes rather than save
them. Start a new transaction and add two more records to the table.
When you query the table, you see the new records you've added. To
roll back these changes, choose Tools | SQL | Transaction | RollBack
from the Main menu. Query the table again. The new records will not
appear in the Answer table.

Important Remember to reset AutoCommit to Yes after this exercise.

1. Choose Tools | SQL | Preferences | AutoCommit from the Main
menu.

2. Choose Yes to turn AutoCommit on.

For more information, see “Transaction processing” in Chapter 6 of
this manual.

Emptying a remote table

Towlsr You can remove all the records from a remote table. You would do
| Rename ed | this if you want to keep the structure of a remote table but no longer
} Expoitﬁ’mport - need the data it contains.
opy >
e > @ Toempty a remote table,
| Net >
| i ,
§ B s JS 1. Choose Tools | More | Empty from the Main menu.
I YR
e tindg 2. For the table name, type sampords or choose it from the list box.
| FormAdd
L 3. Choose OK to confirm and delete all records.

i Protect >

| Directory For more information about emptying tables, see the discussion of
g

f— Tools | More | Empty in Chapter 5 of this manual.

Chapter 3, A quick tour 31

Deleting a remote table

32

Tools

Rename
QuerySpeed
ExportImport
Copy
Delete
[Tabie
Form
| Report
| Script

| Index

| KeepSet
| valCheck
L Graph

v

vyevy

User's Guide

You can delete a remote table you no longer need on your database
server. When you delete a table, whether local or remote, you also
delete any associated files, such as its indexes and forms. If it's a
remote table, you delete its replica as well.

To delete a remote table,
1. Choose Tools | Delete | Table from the Main menu.
2. For the table name, type sampords or choose it from the list box.
3. Choose OK to confirm and delete the table.

Repeat these steps for Sampord2.

For more information about deleting remote tables, see the discussion
of Tools | Delete in Chapter 5 of this manual.

CHAPTER 4

UseSQL, the SQL command editor

UseSQ cards

This chapter introduces you to the tool you can use to send SQL
statements directly to your server. UseSQL is the command editor
you use to write and execute SQL statements in SQL Link.

You can play the UseSQL script anywhere in Paradox or select

=| Utilities | UseSQL from the Main menu. Although the Paradox SQL
Link menus and PAL commands provide most of the functionality
you need to work with remote data, some tasks, such as system
administration, must be performed using SQL directly. That’s where
UseSQL comes in. With UseSQL, you can

O create and test SQL statements before including them in a PAL
program

7 save a set of frequently used SQL statements and run them by
picking individual statements from a list

You can think of UseSQL as providing a sequence, or stack, of cards
containing SQL statements. The length of each statement is unlimited,
but there can be only one statement per card. Each card is numbered,
and you can see only one of them at a time. You execute each
statement individually by displaying it onscreen and pressing F2
Do_It! or selecting DO-IT! from the menu. The cards are arranged so
that if you're at the last card in the stack and ask to see the next card,
the first card appears.

UseSQL provides a command editor so that you can cut and paste
single lines or entire SQL statements from one card and paste them to
another. You can try variations of the same statement by copying it to
different cards and changing certain values. The SQL command
editor functions identically to the Paradox Editor. It provides all the
tools you need to write single SQL statements, or to write and debug
full SQL programs.

SQL statements can span multiple lines, and the number of cards you
can have is limited only by available disk space. Each UseSQL card

Chapter 4, UseSQL, the SQL command editor 33

can contain only a single SQL statement and only one card can be
active at any time.

Starting UseSQL

UseSQL is a PAL script that you play from the =1 Utilities menu by
choosing = Utilities | UseSQL. You can also choose Scripts | Play and
select the UseSQL Script.

UseSQL displays the last card you used in the previous session from
the card stack in your working directory. The first time you start
UseSQL, there are no cards in the stack, so UseSQL displays an
empty card. You can now type in any valid SQL statement, using the
appropriate dialect for your database server.

Edit the SQL statement, or choose from the menu.

Connection menu The Connection menu has the following options:

Table 4-1 UseSQL Connection menu options

Menu option Description

Select Lets you specify a server connection (if you have not
already chosen one using ToolsISQLIConnectionlSelect from
the Main menu). If you have established a connection but
want to change it, you can use this option to break the
current connection and establish a new one.

Make Re-establishes the server connection stored in memory after
you perform ConnectionIBreak or break the connection
some other way (for example, by pressing Gtri-Break during
a query).

34 User’s Guide

File menu

Menu option Description

Break Allows you to break the current server connection without
immediately re-establishing another connection. Information
about the connection remains in memory.

Status Displays one of three different messages indicating the
status of a connection:

1. Connected to <servername> (if you’re connected to a
server)

2. Connection set to <servername> (if you've specified a
server connection but aren't currently connected)

3. Not connected to a server (if you haven't specified a
connection)

To work with individual SQL statements, you access options in
UseSQL's File menu.

Table 4-2 File menu options

Menu option Description
New Lets you create a new SQL statement.
Open Lets you access a different SQL statement. When you

choose this option, the Select A Card dialog box
appears, listing all of the SQL statements you've
entered. It also lists the user name of the SQL
statement’s creator, the date on which the statement
was created, the date on which the statement was
last run, and the connection for which it was created.
You can move to another card by selecting it from

the list.

Save Lets you save the current SQL statement and
continue editing.

CopyTo This option is context sensitive, depending on

whether a card or an Answer table is in the active
window. If the active window contains a card,
CopyTo lets you save the current SQL statement to a
script file (with the statement nested in a
SQL...ENDSQL command and with a .SC extension)
or to a text file (containing only the statement). If the
active window contains an Answer table, CopyTo lets
you save a copy of the table under a different name.

InsertFile Inserts a file at the location of the cursor.

WriteBlock Prompts you for a file name then writes the text you
have selected on the current UseSQL card to a file.

Print Lets you print the current SQL statement to your
printer.

Chapter 4, UseSQL, the SQL command editor 35

Creating a SQL statement

Renaming a UseSQL card

36

User’s Guide

To create a new SQL statement, choose File| New. When you choose
OK; a new card appears. You can now type in any valid SQL
statement, using the appropriate dialect for your database server.

Connection

Search

DO-IT! Quit

= File Edit

m the menu.

Each SQL statement you create with UseSQL contains the following
information:

3 Created By: The name of the user who created the statement.
0 Creation Date: The date on which the statement was created.

0 Last Run: The date on which the statement was last executed. If
the statement has not been executed, this field is blank.

0 Connection: The connection for which this statement was
originally created. The connection can be any valid SQL Link
connection (including a custom connection).

To change the title of this card, choose Edit | RenameCard. Type the
new name in the Title text box.

ISELCECT DISTINCT CUSTOMER NO, CITY,
lFrom JLEE - cusTOMER
| UsesqL Card

(Z1P CODEY

foroER 5Y' CUSTOMER| Title:

“‘tai‘f

 Created By: JLEE
Creation Date: 1- nay-qz
Last Run: 5-May-92
Connection: Customer Data

statement.

Navigating between cards To access another SQL statement you can use File | Open from the
UseSQL Main menu.

Centra1 Customers

East Coast Customers

Orders for Database Products

Sales Leads from Trade Show
- West Coast Customers

You can also move between cards with the keyboard. Press Ctrl-PgUp
or Ctrl-PgDn to display the previous or next UseSQL card, respectively.
To go to the first card in the stack, press Ctrl-Home. To go to the last
card, press Ctrl-End.

Editing SOL statements

You can modify your commands using the editing keys listed in
Table 4-3. You can also use your mouse to move around a UseSQL
card, select text, and choose menu options. For additional information
on features available in the Editor, see Chapter 12 of the Paradox
User's Guide.

Chapter 4, UseSQL, the SQL command editor 37

Table 4-3 Table editing keys

Key Description S

Editing keys

Ins Toggles between insert and overwrite mode.

Del Deletes the current character if no area is highlighted or
erases entire highlighted area.

Ctrl-Ins Copies the selected (highlighted) area to the Clipboard.
(This replaces any text that was previously copied to the
Clipboard.)

Shift-Del Cuts the selected (highlighted) area to the Clipboard.
(This replaces any text that was previously copied to the
Clipboard.)

Shift-Ins Inserts (pastes) the contents of the Clipboard at the
current cursor position.

Backspace Deletes one character to left of cursor.

Navigation on the same card

“ Moves cursor one character left.

- Moves cursor one character right.

T Moves cursor to previous line.

l Moves cursor to next line.

Home Moves cursor to start of the current line.

End Moves cursor to end of current line.

Ctrl « Moves cursor to end of previous word.

Ctrl - Moves cursor to beginning of next word.

PglUp Moves cursor up one screenful in the current SQL
statement.

PgDn Moves cursor down one screenful in the current SQL
statement.

Navigation between cards

Ctrl-Home Moves cursor to start of first command in the stack.

Ctrl-End Moves cursor to start of last command in the stack.

Ctrl-PgUp Moves cursor to start of previous statement.

Ctrl-PgDn Moves cursor to start of next statement.
Edit menv In addition to these editing keys, you can use UseSQL's Edit menu to

perform operations on blocks of text and UseSQL cards. The
following table describes these options.

38 User's Guide

Search menu

Table 4-4 Edit menu options

Menu option
XCut

Copy
Paste

Erase

Goto
Location

ShowClipboard
RenameCard

DeleteCard

Description
Cuts the selected text to the Clipboard.
Copies the selected text to the Clipboard.

Inserts the contents of the Clipboard at the location of the
cursor.

Erases the selected text in the current SQL statement and
does not store it on the Clipboard.

Lets you specify a particular line to go to.

Displays the ling and column position of your cursor in the
current SQL statement

Shows you the contents of the Clipboard.

Changes the title of the current UseSQL card. You can use
any descriptive word or phrase, up to 35 characters.

Deletes the current UseSQL card. When you do so, the next
UseSQL card appears.

UseSQL lets you find and replace strings in SQL statements using the
Search menu. The following table describes the options available

from this menu.

Table 4-5 Search menu option

Menu option
Find
Next

Replace

ChangeToEnd

Description -
Finds a text string in the current SQL statement.

Finds the next occurrence of the last-defined text string in
the current SQL statement.

Performs a single search-and-replace operation in the
current SQL statement. Brings up dialog boxes in which you
can define the strings to search for and to replace.

Replaces all instances of a specified string in the current
SQL statement. Brings up a dialog box in which you can
define the strings to search for and to replace.

Chapter 4, UseSQL, the SQL command editor 39

Executing a SQL statement

When you're ready to test your SQL statement, press F2 Do_It!.

Paradox sends your statement to the server for processing. If you are

not connected to a server, UseSQL gives you the option to connect.
onnection DO-ITL Quit

West Coast Customers —-—

| “NO, CITY, STATE
HIFROM JLEE.CUSTOMER
HWHERE UseSQL

You have not specified a server connection.

If your command is a query (for example, a SELECT statement) and
the database server produces a result, UseSQL captures the result in a
local Paradox Answer table and displays it.

With an Answer table selected, you see the following menu (some
menu options are unavailable as they don’t apply to tables):

SELECT DISTINCT CUSTOMER NO,
FROM JLEE.CUSTOMER
WHERE

(Z1P CODE LIKE '9%")

Customer no

Berkeley
Seattle
Honolulu
San Francisco
Klamath Falls
Atherton
San Francisco
Bel Air
Tiburon

San Francisco

1
2
3
4
5
6
7
8
9
0

1 |

When the Answer table is selected, you can use File | CopyTo to save it
under another name. If you don't save the Answer table, Paradox will
delete it (as it deletes other temporary tables) when you leave
Paradox.

40 User’s Guide

When you select the UseSQL card, all of the menu selections become
available again.

Some SQL statements, such as a DROP TABLE statement, don’t
produce an Answer table. In these cases, UseSQL displays a summary
of your statement’s results in the lower right message area.

SQL Link displays any messages produced by your server or by
Paradox. If your command produces an error on the server, SQL Link
displays the resulting error message. An error might result from a
failure in the server connection or a problem in your SQL statement.
You'll need to correct the error before you can execute the statement
successfully. Refer to Table 4-3 for a list of editing keys and their
functions.

Leaving UseSOL

Choose Quit to leave UseSQL and return to the Paradox Main menu.
UseSQL automatically saves your changes.

Learning more about SOL

To learn more about SQL programming, refer to your database server
manuals, where your server’s specific implementation of SQL
statements is fully explained. To learn more about using PAL’s SQL
commands, see Chapter 6.

Chapter 4, UseSQL, the SQL command editor 41

42 User’s Guide

CHAPTER 5

Menus

This chapter describes the menu commands SQL Link adds to
Paradox. It also describes how some of the familiar Paradox menu
commands work with SQL Link.

Only those commands that are unique to SQL Link or that work
differently when you're using SQL Link are discussed in this chapter.
If you try to use a Paradox menu command that is not valid for
remote operations, you'll get an error message. Keep in mind that
you can always query a remote table then create a local table by
renaming the resulting Answer table, and perform any Paradox
operation on the local table. If you need information about a menu
command that is not included here, see the Paradox User’s Guide.

This chapter presents the menu commands for SQL Link in the order
in which they appear on the Paradox Main menu.

Ask

vmoyvews Ask [Report Create Modify clmage Eeves

You can query data in remote tables, using Ask, in much the same
way you query local Paradox tables. To query a remote table,

1. Choose Ask from the Main menu. Paradox prompts you for a
table name.

2. Type the name of the remote table you want to work with, or
choose it from the list box. Paradox prompts you for your user
name and password if necessary.

Chapter 5, Menus 43

Note

Mvultiple Query forms

44

User’s Guide

View Ask Report Create Modify 1Image Forms Tools Scripts Exit

Table:

Sales

Sampordl

Sampords

i
1

Vols f |
|

. O

Xchange

Remote user name: [NEEEEEG_G——NR

AC

3. Type your remote user name and press £nfer. Paradox prompts
you for your remote password.

4. Type your remote password and press Enter. Paradox displays a
Query form for the table you've selected.

5. Fill in the Query form as usual and press F2 Do_lt!.

Not all Paradox Query operators are valid in the SQL environment.
See Table 5-2 for details.

Paradox walidates your query, translates it into the appropriate SQL
dialect, sends it to the server, and displays the result in a local Answer
table. You can treat this Answer table as you would any Answer table.
For example, you could rename it (using Tools | Rename), and then
use it to generate forms, reports, and graphs.

For more information about queries, see Chapter 5 in the Paradox
User’s Guide.

SQL Link lets you have more than one Query form on the workspace.
You can combine queries on several remote tables, provided all
remote tables on the workspace use the same SQL connection.

You can’t combine local and remote tables in a single query, nor can
you combine remote tables from different connections. You can,
however, query remote tables and rename the resulting Anstwer tables
as local tables. You can then combine these local tables in any valid
Paradox query. The following is an example of a join between two
remote tables.

Customer NoilLast Name|First NamefA dress|City StateZip Code Telephone

~iCustomer No KeF1d Item|{Unit Price Quantity iDescription Amount

Last Name S | Description
Cole SuperKey
Cole Turbo Pascal 6.0
Mason Turbo Pascal Professional
Mason Turbo Pascal Professional
Mason Turbo Pascal for Windows
Bowman Turbo Assembler/Debugger
McGarrett { Turbo C Professional
Thompson Turbo Assembler/Debugger

oo v s wn

Be aware that the data in the Answer tables is not “dynamic”; it is a
snapshot of the contents of the remote table and is not updated when
the data on that table changes.

SQL query operators SQL Link lets you construct remote table queries using all Paradox
reserved words and operators listed in Table 5-1 and none of those
listed in Table 5-2. See Chapter 5 of the Paradox User’s Guide for
explanations and examples of how to use operators in your queries.

Table 5-1 Supported SQL Link QBE operators

Category = Operator Meaning
Reserved words and v Display field in Answer
symbols
v+ Display field and include
duplicate values
VA 4 Display field with values
in descending order
CALC Calculate new field
INSERT Insert new records with
specified values
DELETE Remove selected records
from table
CHANGETO Change values in
selected records
Arithmetic operators + Addition or concatenation
- Subtraction
* Multiplication
/ Division

Chapter 5, Menus 45

46

User’s Guide

Category

Operator

Comparison operators

Wildcard operators *

Special operators

Summary operators

0

NOT
BLANK
TODAY
OR

AS

AVERAGE
COUNT
MAX

MIN

SUM

ALL

Group operators in a
query expression

Equal to (optional)
Greater than

Less than

Greater than or equal to
Less than or equal to

Any characters
Any single character

Does not match
No value
Today’s date

Specify OR conditions in
a field

Specify AND conditions in
a field

Specify name of field in
Answer

Average of values
Number of values
Highest value
Lowest value
Total of the values

Calculate summary based
on all values in group,

including duplicates

* On case-sensitive servers, the wildcard operators @ and .. always produce a
case-insensitive search pattern.

Transaction processing

and queries

Displaying your SQL
query
Alt-F2
ShowSOL

Table 5-2 Paradox QBE operators not supported on remote tables

Category Operator

Reserved words G
FIND
SET
FAST

Special operators LIKE
!

Set comparison operators ONLY
NO
EVERY
EXACTLY

In addition, the following restrictions apply:

7 While you can use summary operators with the CALC operator

(for example, CALC SUM), you cannot use restricted aggregation

or aggregate constants in remote queries (for example,
AVERAGE <17, SUM X).

A You cannot use multiline or multi-table DELETE or CHANGETO

queries.

3 You cannot use wildcard (pattern) operators in date or numeric
fields.

If you're building an application using transaction processing, the

AutoCommit setting affects record locking after queries; AutoCommit

Yes performs a COMMIT after each query. See the discussion of
AutoCommit, later in this chapter, and your server-specific
addendum for details.

SQL Link automatically translates your query into a SQL statement
that your database server understands.

Whenever you have a query on the workspace, you can press Alt-F2
ShowSQL to display the SQL translation of the query. When you
press Alt-F2 ShowSQL, Paradox displays the SQL statement in a box
on the screen, as illustrated in the following figure.

Chapter 5, Menus

47

Saving your query

= View Ask Report

Create Modif 1 Tools Scri
0

r OME 1

|Customer No|Last Name|First Nam ss|City|State|Zip Code Telephone
=

[Customer Nol|KeyFld|Item|Unit Pr

SELECT C.Last Name, C.State, O0.Description
FROM jlee.CUSTOMER C, jlee.ORDERS 0 |

ANSWER |l (0.Customer No = C.Customer No)

Turbo Pasc$1 Professional
Turbo Pascal for Windows
Turbo Assembler/Debugger

When you're through viewing the query, press any key or click a
mouse button to clear the box and return to the workspace.

Just like a query form for a local Paradox table, you can save a
remote query in a PAL script. With SQL Link, you have two options:

O You can save it in a PAL QUERY...ENDQUERY command by
choosing the Scripts | QuerySave command. For more information,
see the discussion of QuerySave in Chapter 18 of the Paradox
User’s Guide.

3 You can save it as a SQL statement enclosed in the PAL
SQL...ENDSQL command by choosing the Tools | SQL | SQLSave
command. For more information, see the discussion of
Tools | SQL | SQLSave later in this chapter.

In either case, you can repeat your query by playing the script by
itself or including it in a PAL application.

Report

Report

(Aahtput
| Design
¢ Change
| RangeOutput
| SetPrinter

48 User’s Guide

1

Choose Report from the Main menu to generate a report from data in
remote tables. You can print a report of data in any remote table
using standard or custom reports.

You can use all the Report commands with remote tables just as you
would with local Paradox tables:

Output Prints a report to a printer, the screen, or a file.

Design Lets you create a custom report for the remote table.
Change Lets you change a report specification.
RangeOutput Prints selected pages of a report.

SetPrinter Chooses and sets up the default printer.

You cannot design multi-table reports on remote tables. You can,
however, query several remote tables, and combine the local Answer
tables with other local tables to create a multi-table report.

Data derived from remote tables will not reflect subsequent changes
made to the original tables. If you suspect that data on the remote
table changes frequently, be sure to run reports promptly after
creating your Answer tables(s).

If you are reporting on only a portion of the data in a large remote
table, it's probably more efficient to query the table (using Ask), and
extract only those fields and records you need. Simply rename the
resulting Answer table to a local Paradox table, then run your report
from this table. You can also choose Tools | Copy | JustFamily to copy
custom reports and forms from the remote table’s replica to this new
table (provided the structure of the Answer table and replica match in
terms of fields’ number, order, and type).

For more information about reports, see Chapter 7 of the Paradox
User’s Guide.

Create

Choose Create from the Main menu to create a new remote table. You
must select a connection before you can create a remote table. You
can do this using the Tools | SQL | Connection | Select command. For
more information, see the discussion of Select later in this chapter.

To create a remote table,

1. Choose Create from the Main menu. If you've selected a server
connection, Paradox asks you whether you're creating a local
table or a remote table.

2. Choose Remote to create a remote table.

3. Type a name for the new table and press Enter. The name should
conform to the naming rules for Paradox tables and your database
server’s rules. Paradox warns you if a table with this name
already exists or displays an error if the table name is invalid. If
this happens, choose a new name for the table.

Chapter 5, Menus 49

50

User’s Guide

1 Help nter new remote table name. {at: ORACL

Paradox displays the name of the current server connection to
remind you where it will create the new table. Paradox also
displays the table name you type in uppercase letters to remind
you that the remote table will be created with all uppercase letters
on the server. If the table name is valid, Paradox displays a
structure image.

. Define the structure of the remote table by filling out the structure

image as you would for a local table. You can use all the standard
Paradox field types (N, $, S, A, and D) except memo (M) and
binary (B). If a field type is not supported on your server, Paradox
maps to the closest type that is supported.

0 Field names must comply with the rules of the database server
you are using. Servers do not allow spaces, unusual characters
(such as hyphens), or reserved words (such as SELECT, KEY,
DATE, DESC, or NUMBER) in field names. Paradox will not
let you type a space. If you use a reserved word, Paradox will
return an error message when you press F2 Do_It! to Create. If
you need more information about field-naming restrictions for
your particular server, see your server-specific addendum or
your server manuals.

O You can create an index for the remote table by defining a
primary key as you would for a local Paradox table. Any
index you create must conform to both Paradox and your
server’s rules. Once you create a remote table with a primary
index, your database server automatically maintains the index
if other users update the table you have created. For more
information about indexes on remote tables, see
“Paradox/server differences” in Chapter 2 of this manual.

Memo fields

A You cannot use SQL Link to create memo fields on remote
tables. If you attempt to define a field as field type M, you get
an error message. If your server supports memo fields, when
you view data from these fields in existing remote tables it
appears as type A255.

5. When you're finished, press F2 Do _It!. Paradox creates the remote
table and its replica. Paradox also creates a primary index and a
replica index, if you've defined an index.

If Paradox is unable to create the table, it displays an error message.
Verify that the field names in the table are permitted by your
database server.

Paradox always automatically issues a COMMIT before and after a
Create operation, so you cannot roll it back. If AutoCommit is set to
No, be aware that using Create will commit any pending
transactions. See “Transaction processing” in Chapter 6 for more
information.

For more information about using Create, see Chapter 10 of the
Paradox User’s Guide.

Modify|DataEntry

Modify
Sort
Edit
CoEdit
. DataEntry |
MultiEntry
Restructure !
Index

You can enter data in a remote table using Modity | DataEntry.
To add data to a remote table,
1. Choose Modify | DataEntry.

2. Type the replica name of the table you want to add data to, or
choose it from the list box.

Chapter 5, Menus 51

52

User’s Guide

Image Undo ValCheck KeepEntry DO-IT! Cancel
- S— e i ————

[———————— = - -
HENTRY OrderNum CustID | StockNum | OrdDate

,

Note SQL Link does not let you view or edit remote SQL tables directly.

Paradox displays an empty table called Entry. This table has the
same structure as the table you want to add records to.

If you want to enter data using a data entry form (such as a
custom form you created using Forms | Design, described later in
this chapter), press F7 Form Toggle. For more information about
selecting custom forms, see the discussion of Modify | DataEntry
in Chapter 11 of the Paradox User’s Guide.

You can also create picture strings and validity checks. Press F10
Menu to access the appropriate menu for these operations.

3. Enter the records you want to add to the remote table.

4. When you're finished, verify that the data is correct, then press F2
Do It!.

]

If the remote table has an index and key violations occur,
Paradox puts the duplicate records in a local Keyviol table. See
the discussion of key violations in Chapter 11 of the Paradox
User’s Guide.

If other problems occur (such as adding NULL values to fields
in a remote table that do not allow nulls, or some other data
integrity conflict), Paradox generates a Problems table. For
more information, see the discussion of Problems tables in
Chapter 17 of the Paradox User’s Guide.

If the server connection fails, or you interrupt the process with
Ctrl-Break, you can save the records you entered in a local
Paradox table by pressing F10 Menu and choosing

DataEntry | KeepEntry. For more information, see the
discussion of KeepEntry in Chapter 11 of the Paradox User’s
Guide.

How fo restructure a remote

table

Validity checks

Forms

Paradox does not support Modify | Restructure for remote tables. If
you need to restructure a remote table, you can create the new
structure, and then use an INSERT query to add selected data.

If you change a remote table’s structure with SQL statements, run
SQL Setup to create a new Paradox replica, then run an INSERT or
UPDATE query to fill in the data.

Validity checks can be placed on an Entry table using Paradox picture
rules. To keep validity checks with the replica, place these first on the
Entry table. Since Entry will be deleted when you exit Paradox, use
Tools | Copy | JustFamily to copy the family members of the Entry
table to the replica and keep those family members permanent.

You can use forms for a replica. When you choose Modify | DataEntry,
all family members (including forms and validity checks) are copied
to the DataEntry table.

When SQL Link creates remote tables, it creates columns that allow
nulls. If you don’t want the remote table to allow nulls, create the
table using passthrough SQL and replicate it using SQL Setup.

For more information on DataEntry, see Chapter 11 of the Paradox
User’s Guide.

Forms

Choose Forms from the Main menu to create data entry forms. For
more information about forms, see Chapter 15 of the Paradox User’s
Guide.

You can design or change a form, but you cannot directly create
multi-table forms for remote tables. You can, however, query remote
tables, rename the Answer tables, and create multi-table forms for the
local tables that contain snapshots of remote data.

| Info

Rename
QuerySpeed
ExportImport
Copy

Delete

The Tools command from the Main menu lets you manage the
Paradox environment.

You can use the following commands from the Tools menu with
remote tables (other commands on this menu don’t apply to remote
tables):

Chapter 5, Menus 53

Note
Copy

Tools

‘Rename >
QuerySpeed
ExportImport »

1' C‘ﬁﬂ'f“" i »

| Delete >

| Info >

. Net >

I sqL >

| More >

| I

54

User’s Guide

Copy Copies local or remote tables.
Delete Deletes local or remote tables.
SQL Manages your session in the SQL environment.

More Displays another menu with commands that let you copy
and delete records, and password-protect replicas.

These tools perform operations on both local and remote tables. To
work directly with replicas, see the discussion of SQL | ReplicaTools
later in this chapter.

If the SQL command does not appear on the Tools menu, SQL Link is
either not installed or not activated. See your server-specific
addendum for more information.

Paradox looks for a PARADOX.OV3 file to determine if SQL is
installed. You need to have the PARADOX.OV3 file present in the
Paradox system files directory to enable SQL Link.

Tools | Copy lets you copy data from an existing table to a new table.
Copy lets you copy

O alocal table to a local table

0 alocal table to a remote table
O aremote table to a local table
)

a remote table to a remote table, even from one server to another
server

If you are copying data to a remote table, the source (local) table
structure must comply with the server’s field-naming rules. This
means that neither table can include embedded spaces in or use
reserved words for field names. In addition, the data-type boundaries
(such as dates and numbers) must comply with the server’s rules.

Before you copy data to a remote table, you need to tell Paradox
where to put the new table. To do this, use Tools | SQL |

Connection | Select to choose a connection. For more information, see
the discussion of Tools | SQL | Connection | Select later in this chapter.

To copy a table,
1. Choose Tools | Copy | Table from the Main menu.

2. Type the name of the source (local) table you want to copy, or
choose it from the list box. (Paradox prompts you for your remote
user name and password if necessary.)

Paradox then asks you whether the new table will be local or
remote.

View Ask Report Create Modif

Image Forms Tools Scripts Exit . .

.| Rename

QuerySpeed
|| Exportlmport
&1 Copy

Table

Table:

Sales
Sampordl
Sampords
Vols
Xchange

| Help opy to ocal table.

3. Choose Remote to create a new table on the database server
specified by your current connection. (Local creates a new
Paradox table on your local drive.)

4. Type the name of the target (remote) table. To protect you from
accidentally overwriting an existing table, Paradox warns if the
name you enter already exists on the database server or in the
current working directory. If this happens, and you don’t want to
overwrite the existing table, type a different name.

Image Forms

= View Ask Report Create Modif Tools

Paradox creates a copy of the table. If the target is a remote table,
Paradox also creates its replica.

o If there is a primary index for the source table, Paradox
automatically creates an index for the target table as well.

o If for some reason the server connection fails, or you interrupt
the process with Ctrl-Break, the target table is not created.

Paradox automatically issues a COMMIT before and after the copy
operation, so you cannot roll it back. Be aware that Copy will commit

Chapter 5, Menus 55

Copy is a single operation.

Delete

Tools

[-
Rename

| QuerySpeed

| ExportImport »
‘ Copy >
Delete 2
‘ Info >
Net >
| sQL >
More >

(

saL

56

Tools
———
Rename
QuerySpeed
ExportImport
Copy
Delete
Info

v

VEVYVYVYVYY

User's Guide

any pending transactions, even when AutoCommit is set to No. See
“Transaction processing” in Chapter 6 for more information.

Paradox treats Copy as a single, atomic operation. If the operation
fails, the entire operation is aborted. Copy will fail if the source
(local) table contains data that is invalid for the target (remote) table.
(For example, the source table could contain a date that is valid in
Paradox, but not on the database server.) If Copy fails, create a new
target table, borrow the structure from the source table, and add the
records from the source table to the target table. If an invalid record is
detected, it is stored in a Problems table, and the ADD proceeds.

For more information about Copy, see Chapter 17 of the Paradox
User’s Guide.

Use Tools | Delete | Table to delete a remote table.
1. Choose Tools | Delete | Table from the Main menu.

2. Type the name of the remote table you want to delete, or choose it
from the list box.

3. To protect you from accidentally deleting a table, Paradox shows
you the fully-qualified table name that the replica refers to, and
asks you to confirm that you really want to delete it. Choose
Cancel to stop or OK to continue.

Paradox directs the server to delete the remote table, along with any
associated remote indexes. Paradox also deletes the replica and any
associated local objects such as forms or reports.

Paradox automatically issues a COMMIT before and after the Delete
operation, so you cannot roll it back. See “Transaction processing” in
Chapter 6 of this manual for more information.

For more information about Delete, see Chapter 17 of the Paradox
User’s Guide. Also see Table 5-3 later in this chapter for more on the
difference between Empty and Delete operations on remote tables.

Use Tools | SQL to manage your work with remote tables.

When you choose Tools | SQL you see the SQL menu with the
following commands:

Connection Lets you manage your server connection.

Transaction Lets you begin a transaction on the server and
commit or roll back changes to remote tables.

ReplicaTools Lets you copy, delete, or rename replicas.

SQLSave Saves the SQL translation of a query to a PAL script.

Preferences Lets you fine-tune SQL environment settings.

Connection

Tools

Rename
QuerySpeed
ExportImport
Copy

Delete

Info

Net

sQL

Connection
Transaction
ReplicaTools
SQLSave
Preferences

v

YvYVYVYVYY

Select

Tools

Rename
QuerySpeed
ExportImport
Copy

Delete

Info

Net

SQL

Connection

Select
Make
Break
Clear

v

YyYYVYYYY

Use Tools | SQL | Connection to select and manage a connection with a
database server.

When you choose Tools | SQL | Connection, you see the following
commands:

Select Lets you select a server connection from a list of available
connections and connects to the selected server.

Make Lets you re-establish a server connection.

Break Disconnects from the server.

Clear Clears the current connection, the workspace, and all

remote user names and passwords.

Use Tools | SQL | Connection | Select, to select a server from a list of
available connections and immediately connect to that server.

Paradox uses this connection to identify the location of any new
remote tables you create with Create | Remote or Tools | Copy |
Remote, and to direct any SQL commands you issue from PAL. When
you choose Select, Paradox displays the list of available connections.

If you have already used a replica in your current Paradox session,
you do not have to explicitly connect to a server if the replica
connection is already established.

Use the SQL Setup Program to customize your list of connections. For
more information, see Chapter 7 of this manual.

To select a connection,

1. Choose Tools | SQL | Connection | Select. You'll see a screen 1isting
the available server connections (the server prod ucts that you've
installed or customized):

= DO-1T1 Cancel

= SQL Connections

Connection Name Description

IBM 0S/2 DB

Microsoft,

ORACLE

VAX Rdb/VMS

MDI Databas

Move the cursor to the connection you want and press

M

SYBASE SQL Server

e Gateway to DB2

Standard connection
Database Manager

Standard connection
SYBASE SQL Server

Standard connection

Standard connection

Standard connection
Database Gateway

18M 0S/2

Microsoft and

ORACLE

VAX Rdb/VMS

DB2 via MDI

[F2] to select it.

Chapter 5, Menus

57

58

User’s Guide

You can change the connection names and descriptions using SQL
Setup. For more information, see Chapter 7.

. Select the server connection you want to use, then press F2 Do_It!.

If you don’t want to connect, press F10 Menu and choose Cancel.

When you press F10 Menu, you'll see a menu with the following
commands:

DO-IT! Selects the current connection, just as if you'd pressed F2
Do It

Cancel Lets you cancel the operation and returns you to the
Connection menu.

Help Displays help about making connections.

. You might need to supply additional information (such as user

name, password, or server name) to Paradox to define a particular
server connection. If so, you'll see a second screen prompting you
for the parameters you need to supply:

= DO-1T! Cancel

—= SQL Connection Parameters =——— -
Parameter Value

Remote user name jlee

Password ok kKK

Host @p:mis _server

[F2] DO-1T! [F10] Menu

You can provide default values for these parameters using SQL
Setup.

Use the mouse or T and | keys to move from field to field, and
type the necessary information. When you're finished, press F2
Do_It! to establish the connection. If you want to cancel your
selection, press F10 Menu to activate the SQL menu and choose
Cancel. You can also press £sc to return to the previous screen,
and choose another connection instead.

For more information on the connection parameters required by
your server, see your server-specific addendum and your server
manuals. If you leave an optional parameter blank, Paradox uses
the server’s default value. If you leave a required parameter
blank, Paradox will not be able to proceed until you provide a
value.

Important

Make

Tools

Rename
QuerySpeed
ExportImport
Copy

Delete

Info

Net

sQl

. Conpection

v

wvvvvy

Break

Tools

' Rename
| QuerySpeed

Exportimport

i Copy

Delete
Info
Net

L sqL

[| connection

| | Select |
|| Make |
- Break |
L] Clear J

v

YYYVYYY

Important

If you don’t have the appropriate communications drivers loaded,
Paradox won’t be able to connect and gives you an error message. If
this happens, you must exit to DOS and load the drivers, then restart
Paradox.

Don't shell to DOS with Alt-0 DOSBig or the PAL DOSBIG or RUN
BIG commands; these drivers are TSRs, and may cause memory
conflicts when you try to return to Paradox.

Tools | SQL | Connection | Make tells Paradox to reconnect to a server
using the current connection information.

Use this command after you break a connection in one of the
following ways:

by selecting a different server connection

by choosing Tools | SQL | Connection | Break

by pressing Ctrl-Break during a remote operation

by executing the PAL DOSBIG or RUN BIG commands
by using Alt-0 DOSBig

by exiting Paradox

g a9 a a Q

If you haven't yet selected a server connection and you choose Make,
you’ll get an error message.

Tools | SQL | Connection | Break lets you disconnect from the current
database server.

When you choose Break, Paradox rolls back the current transaction (if
any) on the server, closes remote files, and disconnects from the
server. By choosing Break to disconnect when you no longer need to
be connected to a server (for example, if you won’t need access to
remote tables for a while), you free up server resources.

You can also break the current server connection in the following
ways:

by selecting a different server connection

by pressing Ctrl-Break during a remote operation

by executing the PAL DOSBIG or RUN BIG commands
by using Alt-0 DOSBig

by exiting Paradox

Q a a a

u]

When AutoCommit is set to No and you break the connection to the
server, Paradox does not commit the changes on that server, and the
server rolls back any open transaction.

Chapter 5, Menus 59

Clear

Tools

| Rename]

‘ QuerySpeed

i ExportImport »

| Copy >

. Delete >

| Info >

| Net >
»

LEQL
’ Cennectnnn

J § Select
| Make

Ll Clear AJ

Transaction

Tools

CRename |

‘ QuerySpeed

‘ ExportImport » ‘

| Copy >

| Delete >

| Info >

| Net >

‘ SQL »

60

Connect1on >
Transaction »
ReplicaTools » |
SQLSave
Preferences > |

[— R
|
|
|
|
|

User’s Guide

Tools | SQL | Connection | Clear clears the current server connection,
the workspace, and all remote user names and passwords for the
current connection.

When you clear the server connection, Paradox acts as if SQL Link is
not running. Until you select another server connection, you won’t
see the option to create a remote table when you choose Create.

The Transaction menu lets you explicitly begin a transaction and
commit or roll back a transaction on a database server.

A transaction can be a single operation (like adding records from one
table to another), or a series of operations (like adding records from
one table to another, then deleting the records in the source table once
the records are added successfully). To conclude a transaction, you
either commit (save) or roll back (abandon) your changes to remote
data.

Paradox automatically commits certain operations for you (the
data-definition commands Create, Tools | Copy, and Tools | Delete, and
their equivalent PAL commands). Therefore, you cannot roll back
these operations, regardless of the setting of AutoCommit.

When you choose Tools | SQL | Transaction, you see a menu with these
options:

Commit Saves changes you've made to remote tables.

RollBack Abandons changes to remote tables if you decide not to
save them (for example, if an error occurred while
updating several tables).

Start Begins a transaction on the database server. If your

server does not automatically begin transactions, you
must use Start if you want to be able to roll back your
changes.

Whether you need to issue an explicit COMMIT or ROLLBACK on
your server depends upon the setting of AutoCommit. For example,
you always need to commit or roll back changes if AutoCommit is set
to No or if you're using the PAL SQL...ENDSQL command. For more
information, see the discussion of AutoCommit later in this chapter
and the discussion of SQL...ENDSQL in Chapter 6.

Commit Tools | SQL | Transaction | Commit lets you save changes on the
database server.

automatically commits certain operations, regardless of the
AutoCommit setting. Commands executed with the SQL...ENDSQL
command are not affected by the setting of AutoCommit. Paradox
never commits these operations, so you must explicitly commit them
(if your server does not). For more information, see the discussion of
AutoCommit later in this chapter.

Tools

| Rename eq \ When AutoCommit is set to Yes, Paradox automatically commits

| Exportimport » changes to remote tables at the conclusion of every menu operation.
} belete . If you set AutoCommit to No, however, Paradox saves your changes
; é%? E l only when you choose Commit. Remember that Paradox

|

\

Connection [
Transaction >
>

| Commit
. RollBack

|
|
|
|
|
[start

Commit succeeds even if there are no changes to save. Commit fails if
you're not connected to a server (on some servers, Commit fails if
there is no transaction pending).

RollBack Tools I SQL | Transaction | RollBack lets you cancel changes made to
Tools remote tables and restore the remote data to the state it was before
[rename e you began the transaction.

| Copy . . .

| Delete failed during a transaction.
i Info
i Net

i Q N d | . . .
| Exportimport I You might want to roll back changes to remote tables if an operation
sQL

YyvvyVvyvwyy

vev

If your server does not automatically begin transactions, you must
T emnection use Start if you want to be able to roll back your changes.
i Transaction
i .~ Commit

. RollBack |

RollBack succeeds even when there are no changes to undo. RollBack
fails if you're not connected to a server (on some servers, Commit
fails if there is no transaction pending).

Start Tools | SQL | Transaction | Start lets you begin a transaction on a
Tools database server.
| Rename o " | Use Start if your database server requires that you explicitly start a
| Export?mport > i new transaction when you begin your session or after you conclude
| » . . .
Delete . the current transaction with Commit or RollBack. If your server does
| anf v ! this automatically, Start has no effect.
1 SQL »
| [Commection » If your server does not automatically begin transactions, you must

| Transaction

| use Start if you want to be able to roll back your changes. See your
[; |
| ﬁﬁ??éﬁcﬁ
| Start

server-specific addendum for more information.

Chapter 5, Menus 61

ReplicaTools

e

- -
| Connection

Tools
{ Rename > |
| QuerySpeed
| ExportImport »
| Copy >
. Delete > ‘
Info >
Net >
sqQL > |
»
| Transaction >
»

| ReplicaTools
I SQLSave
. Preferences

Rename

Tools
Rename
QuerySpeed
ExportImport
Copy
Delete
Info
Net
sqL

YVYYVYY VvV

|

|

‘\— Connection
* Transaction
| ReplicaTools

-
Rename |

— Copy |
i Delete |

62 User’s Guide

Tools I SQL | ReplicaTools lets you perform basic file operations
(rename, copy, and delete) on replicas of remote tables.

When you use the standard Tools | Copy and Tools | Delete
commands, Paradox assumes they’re to be performed on remote
tables and their replicas. With ReplicaTools, you can perform
operations on a replica without affecting the remote table.
ReplicaTools do not affect local Paradox tables.

For example, when you delete a remote table (using Tools | Delete),
you delete the remote table and its replica. When you delete a replica
using Tools | SQL | ReplicaTools | Delete, however, you delete only the
replica, not its remote table.

Use Tools | ReplicaTools | Rename to rename a replica. (You cannot
rename a replica with Tools | Rename.)

If the replica is encrypted, you will need to supply the proper
password before you rename, copy, or delete it.

The ReplicaTools menu offers the following options:

Rename Renames a replica.
Copy Duplicates a replica.
Delete Erases a replica you no longer need.

You would use the Rename option from the ReplicaTools menu, for
example, to give a more appropriate name to a replica. You would
use Copy to give another user access to a remote table by copying the
replica to their working directory or to a shared directory. You would
use Delete to delete a replica you no longer need.

Tools | SQL | ReplicaTools | Rename lets you assign a new name to a
replica. This command (like the other ReplicaTools commands)
renames the replica but not its remote table.

To rename a replica,

1. Choose Tools | SQL | ReplicaTools | Rename from the Paradox Main
menu.

2. Type the name of the replica you want to rename, or choose it
from the list box.

Type the new name for the replica, then press Enter. If you type
the name of an existing replica as the new name, Paradox
displays an error message, and you'll have to specify a different
name. If you type the name of an existing local table, Paradox
asks if you want to cancel the operation or replace the local table.

When you're through, Paradox renames the replica.

Copy

Tools | SQL | ReplicaTools | Copy lets you make a copy of a replica

ooke without affecting the remote table. You can copy the replica to a

[kename . different directory or to a different name in the current directory. For
| QuerySpeed example, you can give another user access to the remote table by

| ExportImport »

| Copy > copying its replica into a shared directory. The other user will still
et . need read privileges to access the remote table with their user name
| sor > and password.

| Connection
| Transaction
| ReplicaTools
]

' Rename

To copy a replica,

1. Choose Tools | SQL | ReplicaTools | Copy from the Paradox Main
| topy menu.

| Delete t

2. Type the name of the replica you want to copy or choose it from
the list box.

3. Type the name (and the complete path name, if you want to put
the copy in a different directory) for the target replica. If you type
the name of a table that already exists in that location, Paradox
gives you an error message, and you will have to specify a
different replica name.

Paradox copies the replica and all of its associated local objects,
such as forms and reports.

Tools I SQL | ReplicaTools | Copy does not copy the associated remote
table; it only affects Paradox access to it. If you want to copy the
remote table as well, use the Tools | Copy command, discussed earlier
in this chapter.

Delete

| Rename

| ExportImport
. Info

. Net

LsQL

[
| Connection

Tools | SQL | ReplicaTools | Delete lets you delete a replica without
Tools affecting its associated remote table. You can delete a replica if you no
: longer want to use it to access its remote table.

v

QuerySpeed .
; To delete a replica,
opy
Delete

|
| 1. Choose Tools | SQL | ReplicaTools | Delete from the Paradox Main
1 menu.

YyYyYvVvvyyYYy

2. Type the name of the replica you want to delete, or choose it from
the list box.

Transaction
| ReplicaTools

| | Rename

- f,ﬁﬁtJ 3. To protect against accidental deletion, Paradox asks you to
- confirm whether you really want to delete this replica. Choose
Cancel to abandon the delete operation, or OK to proceed.

Paradox deletes the replica and all of its associated local objects
(such as forms and reports).

This operation does not delete the remote table, but it eliminates
access to the remote table through this particular replica (you can
create another replica with the SQL Setup Program). If you want to

Chapter 5, Menus 63

SQLSave

64

Tools

Rename

! QuerySpeed

! ExportImport

| Copy
Delete
Info

- Net

| saL

.| Connection
i Transaction
| ReplicaTools
| SQLSave

User’s Guide

YvYVYVYVYY

Preferences

delete the remote table as well, use the Tools | Delete command,
discussed earlier in this chapter.

Tools ISQL | SQLSave lets you save the SQL translation of a query to a
PAL script. The resulting script contains a SQL statement enclosed in
a PAL SQL...ENDSQL command.

You can use SQLSave to save a query (created by choosing Ask from
the Paradox Main menu) for later use. For example,

If you saved this query using SQLSave, you'd get a PAL script that
looks like this:

File it Search Options DO-1T! Cancel

sqlsamp\allords.sc :

Go
40

QL
SELECT DISTINCT StockNum, Quant, OrdDate, EmpNum
FROM jlee.SAMPORDS
ORDER BY StockNum, Quant, OrdDate, EmpNum

EndSQL

Replace ; cript

SQLSave lets you use query-by-example (QBE) to automatically
construct SQL queries and include them in your PAL applications.
You can also run saved scripts using Scripts | Play.

SQLSave is similar to the Scripts | QuerySave menu command.
SQLSave saves a query as a SQL statement while QuerySave saves it
as a PAL query image. If you save a query as a PAL query image, it is
converted to SQL each time you run the script. This can be useful if
you intend to run the query against servers that use different SQL
dialects.

If you save a query as a SQL statement, you can modify the script to
use the special tilde (~) variable. For more information, see the
SQL...ENDSQL command in Chapter 6.

SQLSave saves the SQL statement you see when you press Alt-F2
ShowSQL on the Query form. For more information about A/f-F2
ShowSQL, see Ask, earlier in this chapter.

Preferences

Tools

Rename > |
i QuerySpeed
ExportImport
| Copy
| Delete
Info
- Net
sQL

yvvyyvy

Connection
Transaction
. ReplicaTools
SQLSave
! Preferences

Yy wvvy

AuvtoCommit

Tools

Rename
QuerySpeed
ExportImport
Copy
Delete
Info
Net

©OSQL

v

yVYVYVYY

Connection >

Transaction > |

ReplicaTools » i
»

SQLSave

Preferences

17h§iocommit >
SetInterrupt » |

AutoCommit = Yes

AutoCommit = No

Tools I SQL | Preferences lets you modify global SQL settings that
determine how other Paradox features work.

When you choose Preferences from the SQL menu, you see the
following options:

AutoCommit Determines whether Paradox saves changes to
remote tables automatically. AutoCommit also
affects locking after queries (see your
server-specific addendum).

SetInterrupt Determines whether pressing Ctrl-Break
interrupts the current SQL operation in PAL
scripts.

Tools | SQL | Preferences | AutoCommit lets you decide whether
Paradox automatically saves your changes to remote tables. By
default, AutoCommit is set to Yes.

In the native Paradox environment, Paradox automatically saves your
changes as you work. In the SQL environment, Paradox automatically
commits certain kinds of changes (for example, when you create or
delete a table on the database server). Paradox can also automatically
save other remote table operations, or you can tell Paradox to
accumulate changes until you're ready to explicitly commit (save) or
roll back (undo) the transaction.

AutoCommit affects remote operations only. AutoCommit does not
affect any implicit commits issued by the database server. AutoCommit
does not affect PAL scripts that rely on embedded SQL programs
(using SQL...ENDSQL) to perform remote operations. You must
always issue an explicit SQLCOMMIT to save or SQLROLLBACK to
undo your changes from within a PAL script.

When you choose AutoCommit from the Preferences menu, you see
two options, Yes or No.

If you set AutoCommit to Yes (the default setting), Paradox
automatically commits any changes made to the remote table. You
will not need to save your changes manually. You will not, however,
be able to roll back any of the changes made to remote tables.

Even when AutoCommit is set to No, Paradox automatically issues a
commit before and after the following SQL operations:

0 CREATE
o COory
0 DELETE

If you set AutoCommit to No, Paradox will not save any changes to
remote tables until it receives a COMMIT from

Chapter 5, Menus 65

0 a menu command (see Tools | SQL | Transaction | Commit).
0 acommand in a PAL script (see SQLCOMMIT in Chapter 6).

0 a SQL statement that has an explicit COMMIT. Even when
AutoCommit is set to No, Paradox automatically issues a commit
before and after the following SQL operations:

0 CREATE
o COPY
o DELETE

When AutoCommit=No, ~ With AutoCommit set to No, you can roll back (abandon) any
you can roll back changes. changes made to remote tables (if your server has not committed
your changes automatically). Changes can be rolled back in one of
five ways:

0 from the menu (see Tools | SQL | Transaction | RollBack)

3 from within a PAL script (see SQLROLLBACK in Chapter 6)
0 after an Empty command

0 from an implicit rollback issued by the server

3 if you break the server connection

You must use Tools | SQL | Transaction | Start to start a transaction after
setting AutoCommit to No, if required by the database server.

Important Paradox does not commit the changes on the current server, and the
server will roll back the current transaction, if you break the
connection in any of the following ways:

by selecting a different server connection

by choosing Tools | SQL | Connection | Break

by pressing Ctrl-Break during a remote operation

by executing the PAL DOSBIG or RUN BIG commands
by using Alt-0 DOSBig

a o a a a a

by exiting Paradox

For more information, see the discussion in Tools | SQL | Transaction
earlier in this chapter, the discussion of transaction processing and
the SQLAUTOCOMMIT command in Chapter 6, and your
server-specific addendum.

66 User’s Guide

Setinterrupt

Tools

| Rename

v

| QuerySpeed

| Copy
! Delete
| Info
. Net
L sQL

I Connection

| ExportImport

! ReplicaTools

| Preferences

vyYYVYYVYY

|
|
1
\
]
|
»
Transaction >
>
»

SQLSave

1
I
|

. AutoCommit :

>
| Setlnterrupt » |
I .)

More

Tools

Rename >
QuerySpeed
ExportImport » \
Copy »>
Delete > ‘
Info >
Net > |
> |
» |

Add

. Copy
. Delete

| More

Tools

v B

Rename
QuerySpeed
ExportImport

Info
Net
SQL

|
l -

3 YyYVYVYVYYY
[

MultiAdd
FormAdd
Subtract
Empty
Protect
Directory
ToDOS

v

L

Tools | SQL | Preferences | SetInterrupt lets you control the effect of
pressing Ctrl-Break during a PAL SQL application. By default,
SetInterrupt is set to Yes. SetInterrupt affects only PAL scripts.

When you choose SetInterrupt from the Preferences menu during a
PAL operation, you see two options:

Yes Terminates the remote operation, rolls back the current
transaction, breaks the current server connection, and
returns control to your workstation.

No Ctrl-Break is handled as in any Paradox operation—the

PAL application breaks at the completion of the current
PAL command.

For more information, see the SQLSETINTERRUPT command in
Chapter 6.

Tools | More lets you add data to remote tables, empty remote tables,
and password protect replicas.

The following options on the More menu apply to remote tables:

Add Adds records from one table to another, whether the

tables are local or remote.

Empty Deletes all records in a table, whether the tables are local
or remote.
Protect Password protects a replica or local table.

Choose Tools | More | Add to add records from one table to another.
Add lets you add

a local table to a local table

a local table to a remote table

a remote table to a local table

a remote table to a remote table, even from one server to another

For example, you could collect daily sales orders in a local Paradox
table, then add them to a remote table at the end of the day. Or, you
could collect shipping records on the database server, then add them
to a local Paradox table at the end of the week. The tables must have
compatible structures; that is, they must have identical column
names, field types, and field order.

Also, the Update option lets you update records in indexed remote
tables with matching records from a local table. Paradox overwrites
the (non-key) field values in a record in the target (remote) table with
the values of a record from the source (local) table if they have
matching key values.

Chapter 5, Menus 67

68

User’s Guide

To add all the records from one table to another,
1. Choose Tools | More | Add from the Paradox Main menu.

2. Type the name of the source table (the one containing the records
you want to add to the target table), or choose it from the list box.
Remember that the source and target tables must have compatible
structures (that is, identical field names, field types, and field
order).

Forms Tools Scripts

3. Type the name of the target table to which you want to add the
records, or choose it from the list box.

Mod

4. If the target is an indexed table, Paradox asks you whether you
want to add the records from the source table as new records in
the target table (NewEntries) or to overwrite records in the target
table that have the same key (Update).

Paradox adds the records from the source table to the target table and
creates a Changed table.

Empty

Tools

Rename
QuerySpeed
ExportImport
- Copy
. Delete
Info
. Net
SQL
| More

i Subtract
| Empty

" Directory

v

RAAAAAA

Add
MultiAdd
FormAdd

Protect »

As in native Paradox, the Add command is an implicit update to
the remote table if the latter is keyed.

If the target table is a keyed table and you chose the NewEntries
option in the previous step, Paradox collects the duplicate records
in a local Keyviol table if key violations occur.

If other problems occur (such as adding records with null values
to a remote table with non-null fields, or some other data integrity
conflict), Paradox generates a Problems table. For more about this,
see the discussion of Problems tables in Chapter 17 of the Paradox
User’s Guide.

If another user has a table lock on the remote table, you'll have to
wait until the user holding that lock frees the data by committing
or rolling back the transaction. Records are added when the lock
is released.

If the server connection fails or if you interrupt the process in any
of the following ways:

7 by selecting a different server connection

3 by pressing Ctrl-Break during a remote operation

7 by executing the PAL DOSBIG or RUN BIG commands
7 by using Alt-0 DOSBig

7 by exiting Paradox

the records will not be added to the target table. If the target is a
remote table, the server rolls back the changes.

For more information about Tools | More | Add, see Chapter 17 of the
Paradox User's Guide.

Choose Tools | More | Empty to delete all the records in a table. Use
Empty when you no longer need the data but want to retain the table
structure for future use.

To empty a remote table,

1. Choose Tools | More | Empty.

2. Type the name of the table from which you want to delete all

records or choose it from the list box.

3. To protect against accidental data loss, Paradox shows you the

fully qualified name of the remote table, and asks you to confirm
that you want to empty the table. Choose Cancel to stop or OK to
continue. If you choose OK, Paradox deletes all the records in the
remote table.

Chapter 5, Menus 69

Protect

Tools

["Rename
| QuerySpeed
ExportImport

v

5

=

(=]
fyvyvvvyvy

’ MultiAdd
| FormAdd
| Subtract
i Empty

i Protect

v

SO

Directory
© ToDOS

70 User's Guide

Table 5-3 illustrates the difference between Delete and Empty
operations on remote tables.

Table 5-3 Differences between Delete and Empty operations

Table emptief; (roquilﬂ -
deletion permanent)

Table emptied (row
deletion is reversible)

Action or condition
AutoCommit = Yes

Delete
Table deleted (dropped)

AutoCommit = No Table deleted (dropped)

Deletes table structure? Yes No
Can be rolled back before No Yes
a COMMIT is executed?

Automatically commits Yes No

whether AutoCommit is
set to Yes or No?

For more information about Tools | More | Empty, see the discussion in
Chapter 17 of the Paradox User’s Guide.

Choosing Tools | More | Protect lets you password-protect a replica,
controlling access to the remote table through Paradox.

The procedure for encrypting a replica is the same as the procedure
for protecting a local Paradox table. For more information, see the
discussion of Tools | More | Protect in Chapter 17 of the Paradox User’s
Guide.

Use the SQL statements GRANT and REVOKE to protect your remote
data. See your database server manuals for more information.

CHAPTER 6

PAL commands and functions

Paradox SQL Link provides additional remote capabilities for existing
PAL commands and introduces PAL commands and functions to help
you manage your SQL session. Paradox SQL Link also enhances PAL
by letting you include SQL statements in your PAL scripts using the
SQL...ENDSQL command. Paradox sends your SQL statements
directly to the database server, saves the results of any SELECT
statement in a local Answer table, and lets you include PAL
expressions and functions in your SQL statements.

Before you use these SQL extensions, you should be familiar with
PAL programming. For a discussion of all aspects of PAL, see the PAL
Programmer’s Guide.

For a discussion of how to approach writing a PAL SQL Link
application, see Chapter 8 of this manual.

Using SQL Link with PAL

You can use many of the PAL abbreviated menu commands with
remote tables by typing the replica name of the remote table in place
of a local Paradox table. The PAL commands in Table 6-1 accept
replica names.

You can also use SQLISREPLICA() to see whether a table is local or a
replica, then SQLCONNECTINFO() to see the location of the remote
table, and SQLMAPINFO() to find the name of a remote table along
with its column names and types.

For more information about these commands, see their respective
entries later in this chapter.

Chapter 6, PAL commands and functions 71

SOL Link PAL
commands and
functions

72

User’s Guide

Table 6-1 PAL commands used with Paradox SQL Link

Command

ADD

CopPY

CREATE

DELETE

EMPTY

ERRORINFO
PROTECT
QUERY...ENDQUERY
REPORT |

Description

 Prints a report for a table.

Adds records from one table to another.
Copies a table.

Creates a new table.

Deletes a table.

Deletes all records in a table.

Provides comprehensive error information.
Password-protects a table.

Places a query on the workspace.

Table 6-2 lists the PAL commands that let you work with remote
tables in the SQL environment.

Table 6-2 SQL Link PAL commands

Command
ERRORINFO

SHOWSQL
SQL...ENDSQL

SQLAUTOCOMMIT

SQLBREAKCONNECT
SQLCLEARCONNECT
SQLCOMMIT

SQLFETCH
SQLMAKECONNECT

SQLRELEASE
SQLRESTORECONNECT

SQLROLLBACK

SQLSAVECONNECT
SQLSELECTCONNECT

Description -
Creates a dynamic array with information about
the most recent error.

Simulates pressing Alf-F2.

Sends passthrough SQL statements to the
database server.

Specifies whether Paradox automatically
commits every change on the server.

Disconnects the current server connection.
Clears the current server connection.

Commits changes made to remote tables on
the database server.

Fetches a record from a pending query.

Connects to the server specified by the current
connection.

Releases the pending query.

Restores the server connection saved with
SQLSAVECONNECT.

Rolls back changes made to remote tables on
the database server.

Temporarily saves the current server connection.
Selects a server connection.

Error handling

Command Description

SQLSETINTERRUPT Specifies whether pressing Clri-Break interrupts
a remote operation.
SQLSTARTTRANS Starts a transaction on the database server.

Table 6-3 lists the PAL functions that let you work with remote tables
in the SQL environment. ISSQL() is the only SQL function that can be
used when SQL Link is not active.

Table 6-3 SQL Link PAL functions

Function Description -

ISSQL() Determines whether the user started Paradox with
SQL on or off.

MENUPROMPT() Returns Paradox’s translation of the prompt issued
by the database server.

SQLCONNECTINFO() Returns connection information for a replica or for
the current connection.

SQLERRORCODE() Returns the most recent server-specific error code

from the database server.

SQLERRORMESSAGE() Returns the text of the most recent error message on
the database server.

SQLISCONNECT() Determines whether Paradox is currently connected
to a server.

SQLISREPLICA() Determines whether a table is a replica.

SQLMAPINFO() Returns structural information for a remote table.

SQLVAL() ~Returns valid SQL expression for use in SAL queries.

Each of the commands and functions is explained in detail later in
this chapter.

SQL Link adds error-handling features to Paradox that trap and
report on remote errors on the database server. Remote errors trigger
the Paradox error-handling routine, just as local errors do.

SQL Link adds remote error codes and messages to the PAL
ERRORCODE() and ERRORMESSAGE() functions. Paradox
intercepts errors from the database server and assigns its own
standard codes and messages to them. Many server error codes can
be mapped to a single Paradox error code; refer to Table 6-6 for a
listing of Paradox’s error codes and their explanations.

SQL Link also adds two functions, SQLERRORCODE() and
SQLERRORMESSAGEQ), to trap server errors directly.

SQLERRORCODE() returns the error code generated by the database
server as a character string. Codes differ between server products.

Chapter 6, PAL commands and functions 73

Transaction processing

74

User’s Guide

SQLERRORMESSAGE() returns the actual error message generated
by the database server. Refer to your database server documentation
for more information about the codes and messages for your specific
server. Refer to Table 6-6 for a listing of Paradox’s error codes and
their explanations.

SQLERRORCODE() and SQLERRORMESSAGE)() retrieve information
about remote errors only; use ERRORCODE() and
ERRORMESSAGE() to trap errors that occur in the local Paradox
environment.

You can add these features to your Errorproc. For example, the
following error-handling procedure displays the server-specific error
code and quits the application whenever an error occurs:

PROC AlwaysQuitErrorProc()
IF (ERRORCODE() >= 1000)
THEN QUIT SQLERRORCODE() + ":" + SQLERRORMESSAGE()
; show the SQL message
ELSE QUIT ERRORMESSAGE() ; any other error
ENDIF
ENDPROC

In this error-handling procedure, if the error is a SQL error, a flag is
set to notify the application. If it's any other error, the procedure quits
the application.

PROC FlagErrorProc()
IF (ERRORCODE() < 1000)

THEN QUIT ERRORMESSAGE() ; any non-SQL error is fatal
ENDIF
SQLErrorFlag = True ; flag error to application
RETURN 1 ; Jjust continue
ENDPROC

For more information about error handling in PAL, see the “Error
procedures” section in Chapter 7 of the PAL Programimer’s Guide. For
more information about Paradox SQL Link error-handling functions,
see the descriptions of ERRORCODE(), ERRORMESSAGE(), and
SQLERRORMESSAGE() later in this chapter.

Paradox SQL Link lets you use the principles of transaction
processing. In the SQL environment, an operation or series of
operations (or changes) is called a transaction and is treated as a
single unit of work. For example, a transaction can consist of a single
operation, such as adding records from one table (Table1) to another
(Table2) where the destination table (Table2) resides on the database
server:

ADD "Tablel™ "Table2" ; single-operation transaction

A transaction can also consist of a sequence of related operations on
the database server, such as the following:

ADD "Table3" "Table2"
EMPTY "Table3"

Some servers require that you start a new transaction explicitly when
you begin your remote session or after you've completed a
transaction, while others do this for you automatically (see your
server-specific addendum for more information). Paradox SQL Link
provides a command for PAL applications, SQLSTARTTRANS, that
begins a new transaction on the server, if your server has not already
started a transaction for you.

At the conclusion of a transaction, you either save your work
(conumnit), or abandon your changes (rollback). You might want to roll
back your changes if, for example, an error occurred during the
transaction that compromised the integrity of your data. SQL Link
adds two commands, SQLCOMMIT and SQLROLLBACK, so you can
save or abandon changes to remote tables.

Paradox automatically commits remote changes after each operation
if SQLAUTOCOMMIT is set to Yes (the default). If you set
SQLAUTOCOMMIT to No, Paradox lets you commit or roll back
your changes explicitly. Paradox commits certain operations
automatically, regardless of the SQLAUTOCOMMIT setting. These
operations—the data-definition commands CREATE, COPY, and
DELETE—cannot be rolled back. Paradox never commits changes
resulting from SQL...ENDSQL commands automatically; you must
always issue an explicit COMMIT or ROLLBACK.

The following example shows one way that transaction processing
works. In this example, Paradox quits the application if any of the
changes fails, and commits only after the last successful transaction.
The first step is to define an error procedure that always tries to roll
back the pending transaction, then quits the application.

PROC AlwaysRollbackAndQuit()
PRIVATE Msg

IF ISASSIGNED(InErrProc) ; first make sure you don’t call
THEN RETURN 1 ; this error proc from within
; the error procedure!
ELSE InErrProc = True ; make sure if next command fails,
ENDIF ; ErrorProc is ignored.

IF (ERRORCODE() >= 1000)
THEN Msg = SQLERRORMESSAGE() ; get the SQL message
SQLROLLBACK
ELSE Msg = ERRORMESSAGE() ; any other error
ENDIF
RELEASE VARS InErrProc
QUIT Msg
ENDPROC

Chapter 6, PAL commands and functions 75

In the next step, the following procedure performs two operations on
the database. Assume that all the tables are remote. The two
operations will succeed or fail together. If a SQL error occurs, the
error procedure will quit.

PROC DoTransactionWithQuit()
ErrorProc = "AlwaysRollbackAndQuit" ErrorProc() ;assign error procedure

SQLSTARTTRANS ; server might require
IF Retval ; explicit transaction start
THEN
SQLAUTOCOMMIT No ; turn Paradox commits off

ADD "WeekOrd" "Orders"
EMPTY "WeekOrd"

SQLCOMMIT ; all operations succeeded,
; commit this transaction
SQLAUTOCOMMIT Yes ; turn autocommit on again
ENDIF
RETURN Retval ; return Retval for evaluation
ENDPROC

As previously mentioned, the following commands commit pending
transactions automatically, regardless of the setting of AutoCommit:

0 CREATE REMOTE
0 COPY REMOTE
0 DELETE (on a remote table)

For more information about PAL commands relating to transaction
processing see SQLAUTOCOMMIT, SQLCOMMIT, SQLROLLBACK,
and SQLSTARTTRANS later in this chapter.

Organization and notation

76

User's Guide

Each PAL SQL command or function is presented separately, in
alphabetical order. The first remark in each entry explains what each
command or function does. Each command or function contains the
following sections:

Notation

Syntax

Description

Use

Example

See also

Describes the format of the command and
any required or optional arguments, as
outlined in the following section,
“Notation.”

Describes the command, what it does, and
its arguments.

Discusses techniques for using the
command, and notes any special cases you
should know about.

Contains programming examples (with
comments) using the command or function.
Refers you to related commands, functions,

and applicable sections of the Paradox
documentation.

Tables 6-4 and 6-5 list the parameters and keywords exclusive to
Paradox SQL applications. See Table 1-2 in Chapter 1 of this manual
for a concise description of the syntax conventions used in the
command and function lookup sections. See also Appendixes B and
C of the PAL Reference for parameters and keywords not listed here.

The Syntax subsection shows how each command and function is
used. Syntax descriptions consist of several elements:

3 Keywords (in uppercase letters) and required punctuation. Unless
the optional or choice notation is used, you st type these
exactly as shown, but any combination of uppercase and
lowercase is acceptable.

A Variable parameters (in italics). You must replace each parameter
with a valid expression, as described in the list of parameters in

Table 6-4.

A Optional elements (enclosed in color brackets []). For example,

CREATE [REMOTE |

shows that REMOTE is optional to the PAL command CREATE.
Color brackets are used only for describing command syntax and
are not to be typed.

0 Lists (enclosed in color braces, with options separated by colored

vertical bars). For example,

SQLSETINTERRUPT { Yes | No }

means to follow the SQLSETINTERRUPT command with one and
only one of the choices shown—Yes or No.

Chapter 6, PAL commands and functions

77

78

User's Guide

The color elements (braces and vertical bars) are used only for
describing command syntax; do ot enter them. Do not confuse
these color braces with regular braces ({ }) that are actually
elements of PAL expressions, such as

Menu {Tools} {More} {Directory}

Table 6-4 PAL SQL variables

Any ordinal nurﬁber }ébférsﬂenting é f'irérld in

A string specific to the connection, SQL
dialect, remote table, or associated server

Any valid PAL expression. See the PAL
Programmer’s Guide for information on PAL

A comma-separated list of the connection
parameters required for SQL connection.

Code name of the server product.

Any valid SQL statement.

The valid name of either a local table or the
replica of a remote table.

Parameter Description
ColumnNumber

the remote table.
OptionName

product.
Expression

expressions.
ParameterList
ProductName
ReplicaName Any replica name.
SQLText
TableName
Title

Connection name as shown on the SQL
Connections screen.

Table 6-5 PAL SQL keywords

Keyword Description o -
DESCRIPTION Used in SQLCONNECTINFO()

DIALECT Used in SQLCONNECTINFO()

NOFETCH Used in SQL...ENDSQL

PRODUCT Used in SQLSELECTCONNECT and SQLCONNECTINFO()
REMOTE Used in COPY, CREATE

TITLE Used in SQLSELECTCONNECT and SQLCONNECTINFQ()
VALUES Used in SQLSELECTCONNECT

ADD

ADD

Syntax

Description

Use

Example

Adds the records of one table to another.

ADD TableNamel TableName2

TableNamel is the source table (either a local table or the replica of a
remote table), and TableName? is the destination table (either a local
table or the replica of a remote table).

Like the equivalent Tools | More | Add menu command, the
abbreviated PAL command ADD adds records in the source table to
the destination table.

When SQLAUTOCOMMIT is set to Yes, Paradox commits the added
records automatically. If an error occurs while you're adding the
records, Paradox rolls back the transaction. When
SQLAUTOCOMMIT is set to No, you'll need to explicitly commit the
added records by using SQLCOMMIT, or if an error occurs, you'll
need to explicitly roll back the transaction using SQLROLLBACK. If
you use SQLBREAKCONNECT before SQLCOMMIT, the server
automatically rolls back your changes.

ADD lets you accumulate data in one table and transfer it to another
when vou're ready. For example, you could collect shipping data in a
local Paradox table and, at the end of the week, add the data to a
remote table on the database server.

If the destination table is indexed, ADD updates records with
matching keys from the source table. ADD automatically selects the
UPDATE option (see the discussion of Tools | More | Add in Chapter 5
of this manual). In this way, you can directly modify the data in
existing records in a remote table. Paradox creates a local Changed
table for those records that were changed on the server. If key
violations occur, Paradox creates a local Keyviol table.

If other errors occur (any data integrity conflict), Paradox creates a
Problems table. For more information about Problems tables, see
Chapter 17 of the Paradox User’s Guide.

To use ADD, Paradox must be in Main mode. Both tables must be
specified and have compatible field structures (field name, order, and
type), or a script error results.

Suppose you accumulate daily sales records in a local Paradox table
named Tdysales and, at the end of the day, you want to add this
information to a remote table named Allsales. This example shows
how to do it:

Chapter 6, PAL commands and functions 79

COPY

See also

ADD "Tdysales" "Allsales" ; adds records from local
; table to remote table

0 SQLAUTOCOMMIT, SQLCOMMIT, SQLROLLBACK, and
SQLSTARTTRANS

0 Tools | More | Add in Chapter 5 of this manual

0 ADD command in the PAL Reference

COPY

Syntax

Description

80 User’s Guide

Note

Makes a copy of a table and its family of objects.

COPY TableNamel [REMOTE] TableName2

TableName1 is the source table (either a local table or the replica of a
remote table), and TableName? is the destination table (either local or
remote).

Like the equivalent Tools | Copy menu command, the abbreviated
PAL command COPY copies a table to a new table and, if it has a
primary index, copies the index too. If the source table has any other
associated files (such as reports or forms), COPY duplicates these as
well. You can copy a file from either a local or remote table, and you
can copy to either a remote or local table.

If the destination for the copy is a server, COPY creates a replica. If
TableName? is remote, you should make sure that the field names
comply with the naming rules of your database server (do not use
Paradox or server-reserved words). See your server-specific
addendum for more information.

If you are creating a remote table, the source table structure must
comply with the server’s field-naming rules. This means that neither
table can include embedded spaces or reserved words. In addition,
the data-type boundaries (such as dates and numbers) must comply
with the server’s rules.

If you use the REMOTE keyword, you need to select a connection
before you use COPY.

You cannot use an existing table name or replica name for the target
table.

Even if SQLAUTOCOMMIT is set to No, if the target table is remote,
Paradox issues a commit so that the COPY can occur. This means that
you cannot roll back a COPY and cannot use COPY in the middle of
a transaction. All work done before the COPY is committed at the

Copy is a single operation.

Use

Example

See also

COPY

start of the COPY. If necessary, start a new transaction after the COPY
operation.

If a local Paradox table has secondary indexes, they will not be
copied to the remote table. Although you can add secondary indexes
to remote tables using passthrough SQL, the secondary indexes you
create are not Paradox-compliant.

Paradox treats COPY as a single, atomic operation; that is, if the copy
fails, the entire operation is aborted. For example, COPY fails if the
source table contains data that does not match the type or range of
columns in the target table, as would be the case if the source table
contains a date that is valid in Paradox but not on the server
database. If COPY fails, you can create a new target table, borrow the
structure from the source table, and add the records from the source
table to the target table. If an invalid record is detected, it is stored in
a Problems table and the ADD proceeds.

Use COPY to create a duplicate of a table. The duplicate is a snapshot
of the original table at the time you copied it. The data in the
duplicate table will not be automatically updated when that in the
source table changes.

Suppose you keep your master price list on a remote table (named
Pricelst), and you want to use that information in a report involving
several local Paradox tables. You could copy Pricelst to a local table:

COPY "Pricelst™ "Prices” ; Prices is local Paradox table

Suppose you collect daily sales information in a local Paradox table
named Tdysales and, at the end of the day, want to copy that
information to a remote table named Daysales that users access on the
database server. Here’s how you do it:

COPY "Tdysales™ REMOTE "Daysales"

0 SQLAUTOCOMMIT, SQLCOMMIT, SQLROLLBACK, and
SQLSTARTTRANS

Tools | Copy in Chapter 5 of this manual
COPY command in the PAL Reference

Chapter 6, PAL commands and functions 81

CREATE

CREATE

Syntax

Description

Use

82

User’s Guide

Note

Creates a new table.

1. CREATE [REMOTE] TableName FieldNamelist

to create a new table with the fields specified in the list
2. CREATE [REMOTE] TableName?2 LIKE TableNamel

to create TableName2 with the same structure as TableNamel

Like the equivalent Create menu command, the abbreviated PAL
command CREATE creates a new table, either local or remote. If the
new table is remote, Paradox creates its replica so it can find the
remote table in the future. To protect you from accidentally
overwriting an existing table, Paradox won't let you specify the name
of a remote table that already exists.

Using syntax form 1, you can create a table by specifying a list of
fields. You can define up to 255 fields. If you specify key fields with
an asterisk (*), Paradox creates a unique index for the table. You can
also create a table (borrowing the structure of an existing table) by
using syntax form 2.

If you use the REMOTE keyword, you need to select a connection
before you use CREATE. You should make sure that the field names
in the new remote table comply with the naming rules of your
database server (do not use Paradox or server-reserved words). See
your server-specific addendum for more information.

Spaces are not allowed in fields of remote tables. If you use CREATE
REMOTE...LIKE... using a local table containing fields with
embedded spaces, this operation fails.

Even if SQLAUTOCOMMIT is set to No, if the table you're creating
is remote, Paradox issues a COMMIT before and after the operation
so that the CREATE can occur. This means that you cannot roll back a
CREATE and cannot use CREATE in the middle of a transaction. All
work done before the CREATE is committed at the start of the
CREATE. If necessary, start a new transaction after the CREATE
operation.

To let other users access the new remote table, use Tools | SQL |
ReplicaTools | Copy to copy the replica to a shared directory. Then use
SQL commands to grant users access to the new remote table.

Use CREATE to define a new table. Suppose, for example, you want
to distribute an application that creates remote tables during

Example

See also

DELETE

installation. You can use CREATE to generate the remote tables using
the structure of local Paradox tables:
CREATE REMOTE “remtabl1" LIKE "loctabl1”

CREATE REMOTE "remtab12"™ LIKE "loctabl2"
CREATE REMOTE "remtab13™ LIKE "loctabi3"

This example creates a remote table called Invoices with a specified
list of fields, including an index on the key field InvoiceNbr (an
asterisk denotes the key field):

CREATE REMOTE "Invoices™

"InvoiceNbr" @ "S*",
"CustomerNbr" : "S",
"InvoiceDate™ : "D",
"TotalCharges" : "$",
"Comments™ : "A20"

The following example creates a remote table called Febsales using the
structure of another remote table called Jansales:

CREATE REMOTE "Febsales™ LIKE "Jansales™

0 SQLAUTOCOMMIT, SQLCOMMIT, SQLROLLBACK, and
SQLSTARTTRANS

0 Create in Chapter 5 of this manual

g CREATE command in the PAL Reference

DELETE

Syntax

Description

Use

Removes a table and its associated files.

DELETE TableName

TableName is the name of the table (either a local table or the replica of
a remote table) you want to delete.

Like the equivalent Tools | Delete menu command, the abbreviated
PAL command DELETE removes a table and all associated files. You
can delete either a local or remote table. Unlike the menu command,
DELETE does not ask the user for confirmation. If Tablename is a
replica, the remote table, the replica, and all family members will be
deleted (the remote table will be dropped).

You delete a table to free up disk space when you no longer need it

(such as a temporary table). Since DELETE does not ask the user for
confirmation, your program should do so explicitly. See the example
for DELETE in the PAL Reference.

Chapter 6, PAL commands and functions 83

EMPTY

Example

See also

When you delete a remote table, Paradox deletes the replica and all
corresponding local objects as well.

If the target table you're deleting is remote, Paradox issues a
COMMIT before and after the DELETE operation (even if
SQLAUTOCOMMIT is set to No). This means that you cannot roll
back a DELETE and cannot use DELETE in the middle of a
transaction. All work done before the DELETE is committed at the
start of the DELETE. If necessary, start a new transaction after the
DELETE operation.

This example shows how to delete a remote table called Checks:
DELETE "Checks"

0 SQLAUTOCOMMIT, SQLCOMMIT, SQLROLLBACK, and
SQLSTARTTRANS
Tools | Delete in Chapter 5 of this manual
DELETE command in the PAL Reference

Table 5-3 in Chapter 5 of this manual, which shows the difference
between EMPTY and DELETE operations on remote tables

EMPTY

Syntax

Description

Use

84 User’s Guide

Removes all records from a table.

EMPTY TableName

TableName is the name of the table (either a local table or the replica of
a remote table) you want to empty.

Like the equivalent Tools | More | Empty menu command, the
abbreviated PAL command EMPTY removes all records from the
specified table. You can EMPTY records in either a local or remote
table. (When emptying a remote table, the SQL command DELETE
FROM TableName is sent to the server.) Unlike the menu command,
EMPTY does not ask the user for confirmation.

Use EMPTY to delete all the information in a table without deleting
the table itself. You can use EMPTY to clear data from a temporary
table used for reporting or editing.

When SQLAUTOCOMMIT is set to Yes, Paradox automatically
commits the removal of records. If an error occurs while you're
deleting records, Paradox rolls back the transaction. When

Example

See also

ERRORCODE ()

SQLAUTOCOMMIT is set to No, you'll need to explicitly commit the
deletions with SQLCOMMIT. If an error occurs, you'll need to
explicitly roll back the transaction using SQLROLLBACK.

Suppose you print a sales report on a weekly basis. To gather data for
your weekly report, you combine sales data from several local and
remote tables and store it in a remote table named Salesrpt. After you
have generated and printed the report, you can empty the Salesrpt
table as shown in the following example:
MESSAGE "Empty the sales report table (Y/N)? "
ACCEPT "AL" TO Response
IF ((Response = "Y") OR (Response = "y"))

THEN EMPTY "Salesrpt™ ; deletes all records
ENDIF
This example empties the contents of a remote table called Inontory:

EMPTY "Invntory" ; deletes all records

0 SQLAUTOCOMMIT, SQLCOMMIT, SQLROLLBACK, and
SQLSTARTTRANS
Tools | More | Empty in Chapter 5 of this manual
EMPTY command in the PAL Refereince

Table 5-3 in Chapter 5 of this manual, which shows the difference
between EMPTY and DELETE operations on remote tables

ERRORCODE)

Syntax

Description

Returns the Paradox code of the most recent error resulting from a
local or remote operation.

ERRORCODE)

ERRORCODE() takes no arguments. It returns a numeric value
indicating the category of the most recent run-time error or error
condition in the local Paradox environment or on the database server.
If no error has occurred since the beginning of the Paradox session,
ERRORCODE() returns 0 (zero).

ERRORCODE() lets you see what kind of error has occurred. It
differs from most other functions in that it is dynamig; its value is
context-specific. In conjunction with the global variable Errorproc,
ERRORCODE() lets you build an error-handling routine into your
application. Refer to Table 6-6 for a list of error codes and messages.
All SQL-specific error codes are in the range starting at 1000.

Chapter 6, PAL commands and functions 85

ERRORCODE {)

Use
See also
86 User’s Guide

ERRORCODE() reports on both local and remote errors. A single
Paradox error code can correspond to many related server error
codes; refer to the results from the SQLERRORCODE() and
SQLERRORMESSAGE() functions and your server manuals for more
specific information. Use SQLERRORCODEQ) to trap server-specific
errors that occur in the remote SQL environment. Check
SQLERRORMESSAGE() for the server-specific error message from the
server.

Table 6-6 Paradox error codes for the SQL environment

ERRORCODE() ERRORMESSAGE()

1000 General SQL error—check SQLERRORMESSAGE() to return
the server error message

1001 Network error

1002 Deadlock on server

1003 User aborted (Ctrl-Break)

1004 Not enough memory to complete operation

1005 Communication error

1006 Connection failed

1007 Insufficient access privileges or incompatible locks

1008 Object already exists

1009 Object name invalid

1010 General create error

1011 Database or disk full

1012 Object does not exist

1013 Column type or usage invalid

1014 Remote key violations (SQL...ENDSQL only)

1015 Syntax error (SQL...ENDSQL only)

1016 Copy failed

1017 Number of authorized users exceeded

1018 Replica inconsistent with remote table

1019 A replica named ReplicaName already exists

Use ERRORCODE() to create an error-handling routine for remote
operations within your application. For examples and more
information, see the discussion in “Error handling” earlier in this
chapter.

0 ERRORMESSAGE(), SQLERRORCODE), and
SQLERRORMESSAGE()

0 the discussion of error handling earlier in this chapter and in
Chapter 7 of the PAL Programmer’s Guide

ERRORINFO

0 ERRORCODE() in the PAL Reference

O your server-specific addendum

ERRORINFO

Syntax

Description

Use

See also

Creates a dynamic array with information about the latest script error.
ERRORINFO TO DynArrayName

ERRORINFO creates a dynamic array with information about the
latest run-time error. This dynamic array contains indexes for error
attributes and their values.

Table 6-7 ERRORINFO array elements

Index Definition , -

SCRIPT The name of the script that caused the error

LINE The line number in the script where the error
occurred

POSITION The character position in the script where the error
occurred

CODE Category code of most recent error; same as the
value returned by ERRORCODE()

USER Name of the user who has locked an object; same as
the value returned by ERRORUSER()

MESSAGE Text of the most recent error message; same as the
value returned by ERRORMESSAGE()

PROC The name of the current PROC; blank if no procedure

SQLERRORMESSAGE Text of the most recent SQL error message if SQL is
loaded (same as the value returned by
SQLERRORMESSAGEY()); blank otherwise

SQLERRORCODE Number that represents the code of the most recent
SQL error if SQL is loaded (same as the value
returned by SOLERRORCODE()); 0 (zero) otherwise

ERRORINFO returns only information about run-time errors. Script
errors and syntax errors won't update any of the information
returned by ERRORINFO.

g DYNARRAY command
0 ERRORCODE(), ERRORMESSAGE(), and ERRORUSER() functions

Chapter 6, PAL commands and functions 87

ERRORMESSAGE ()

0 Chapter 7 of the PAL Programmer’s Guide for information about
error handling

ERRORMESSAGE ()

Returns the Paradox message for the most recent error resulting from
a local or remote operation.

Syntax ERRORMESSAGE ()

ERRORMESSAGE() takes no arguments. It returns a string containing
the text of the most recent run-time error or error condition in the
local Paradox environment or on the database server. This is the same
message that Paradox displays on the message line after the error
occurs. If no error has occurred since the beginning of the Paradox
session, ERRORMESSAGE() returns a blank (“”) string.

Description ERRORMESSAGE() is used to retrieve the message generated by
Paradox when the last error occurred. ERRORMESSAGE() reports on
local and remote errors. Use SQLERRORMESSAGE() to return the
server-specific message. See Table 6-6 for a list of error codes and
messages.

Usage Use ERRORMESSAGE() to create an error-handling routine for
remote operations within your application. See the discussion in
“Error handling” earlier in this chapter.

See Also 0 ERRORCODE(), SQLERRORCODE(), and SQLERRORMESSAGE()

the discussion of error handling earlier in this chapter and in
Chapter 7 of the PAL Programmer’s Guide

ERRORMESSAGE() function in the PAL Reference

your server-specific addendum

ISSQL ()

Determines whether SQL Link is running.
Syntax ISSQL ()

Description ISSQL() lets you determine whether SQL Link is installed and
enabled. SQL capabilities are enabled by default once you install SQL

88 User’s Guide

Use

Example

See also

MENUPROMPT ()

Link. ISSQL() returns False if SQL Link is not installed or if you start
Paradox from the DOS prompt with:

paradox -sql off

This is the only SQL Link function that you can use when SQL Link
is not enabled.

ISSQL() lets you determine whether the user started Paradox with
SQL Link installed and enabled, allowing you to run remote
operations in your application. You should check this once at the
beginning of any PAL script or application in which a remote
operation occurs (and any script that calls another script that runs a
remote operation).

This example uses ISSQL() at the beginning of a PAL script to verify
that SQL Link is enabled before calling a procedure that uses a
remote operation:

IF ISSQLO) ; if SQL enabled
THEN DoRemote() ; can run remote operations
ELSE
MESSAGE "Cannot continue - SQL Link is not activated.”
RETURN
ENDIF

0 “Starting Paradox” in your server-specific addendum

MENUPROMPT ()

Syntax

Description

Returns the text of the current type-in prompt.

MENUPROMPT ()

MENUPROMPT() takes no arguments. It returns a string value
containing the text of the current Paradox type-in prompt, or the
string “Error” if a dialog box with a type-in prompt is not being
displayed.

If a Paradox menu dialog box is currently displayed,
MENUPROMPT() returns a string containing the type-in label. For
example, MENUPROMPT() returns the prompt that appears in a
dialog box when the user accesses a replica and is not connected to
the server associated with that replica.

This function applies only to Paradox menu dialog boxes and not to
dialog boxes created with SHOWDIALOG. MENUPROMPTY() is only
available for dialog boxes that request a type-in response; it does not

Chapter 6, PAL commands and functions 89

QUERY

Example

See also

apply to menus or list boxes. If MENUPROMPT() is used in an
inappropriate context, it returns the string “Error”.

{ASK)} SELECT "ORDERS" ; query remote table
IF MENUPROMPT()<>"Error™

QUIT "Cannot run remote query. You" +

"are not logged in to the server.”

ENDIF
CHECK ; place check marks in all fields
DO _IT! ; execute remote query

0 MENUCHOICE() in the PAL Reference

QUERY

Syntax

Description

90 User’s Guide

Places a query statement on the workspace.

QUERY
Querylmage
ENDQUERY

Querylmage represents the query statement.

This command places a query statement on the workspace but does
not execute it. (Follow the ENDQUERY keyword with DO_IT! to
execute the query.) Note that blank lines must separate Querylmage
from the QUERY and ENDQUERY keywords.

The default sort order for the fields in the Answer table is set in the
Custom Configuration Program (CCP) and can be changed with the
SETQUERYORDER command. You can use QUERYORDER() to check
the current default setting.

To use the QUERY command, compose the query interactively in
Paradox, then use Scripts | QuerySave to save it as a script. The saved
Query image will be properly enclosed by the QUERY and
ENDQUERY keywords. Then, either play the query script from your
script or use the Editor to insert it into your script.

Querylmage is straight ASCII text, which can be edited. It is preferable
to make all but minor edits to a saved query; use Scripts | Play to
redisplay the query, edit the query on the workspace, then use
Scripts | Query Save to save it again. Paradox validates changes you
make to a query with the latter method; it is easy to make an error if
you edit the ASCII query statement in your script.

Use

Example

See also

REPORT

In the query script, checked fields are indicated by the keywords
CHECK, CHECKPLUS, CHECKDESCENDING, or GROUPBY.
Example elements are preceded by an underscore (_).

You can use PAL variables in a query by preceding the variable name
with a tilde (~). Because PAL uses an underscore character to
represent an example element, do not use an underscore in a variable
name that will be used in a query.

This script looks up the customer record for the customer whose
name is stored in the variable name:

name = "Jones"

QUERY ; put the query on the workspace
Customer | Cust ID | Last Name | Init | Street | City
| Check | Check ~name | Check | Check | Check
ENDQUERY
Do_IT! ; execute the query
IF (ISEMPTY("Answer™)) ; none found
THEN MESSAGE name + ™ was not found.™
ELSE
FORMKEY ; go into form view
WAIT RECORD ; let user examine record
MESSAGE "Press F2 when done.”
UNTIL "F2"
ENDIF

SETRESTARTCOUNT command
QUERYORDER() function

Chapter 9 of the PAL Programmer’s Guide for information about
creating query scripts

0 Chapters 5 and 6 of the Paradox User’s Guide for information
about queries

REPORT

Syntax

Prints a report.

REPORT TableName ReportName

TableName is the name of the table (either a local table or the replica of
a remote table) on which you want to report, and ReportName is the
name of the report you want to use. Use “R” for a standard report, or
“1” through “14” for a custom report.

Chapter 6, PAL commands and functions 91

SHOWSQL

Description

Use

Example

See also

Like the equivalent Report | Output | Printer menu command, the
abbreviated PAL command REPORT sends a specified report for
TableName to the printer. You can create custom reports for a remote
table using the Report | Design command.

REPORT lets you print the contents of a remote table. You can report
on any single remote table, but you cannot use REPORT on multiple
remote tables simultaneously. You can, however, query a remote table
and run a multi-table report using the Answer table with other local
tables.

Depending on the size and complexity of the remote table, it may
take a long time to complete the specified report. If you are not
familiar with the structure of the remote table that you want to report
on, use the Tools | Info | Structure command on the replica to obtain
this information before generating a report on the entire table. You
can also use CALC COUNT ALL to find out how many records are in
the remote table, or query the table to extract the records you are
interested in, copy the report to the Answer table, and print the report.

This example prints a standard report for a remote table called Clients:

REPORT "Clients™ "R"

In the following example, REPORT prints a custom report, “2,”
created using Report | Design from the Paradox menu:

REPORT "Clients™ "2"

0 REPORT command in the PAL Reference

SHOWSAQL

Syntax

Description

Use

Example

92 User’s Guide

Shows the SQL statement equivalent to the current Paradox query.

SHOWSQL

SHOWSQL returns the SQL code for the current replica query and
displays it in a window. Performs the same function as pressing Aff-F2.

SHOWSQL works only on replicas. It provides an easy way for you
to view and debug QBE and SQL queries.

The following example queries the Accts table and displays the
equivalent SQL statement. The Accts table is a replica of a remote
table.

See also

SQL...ENDSQL

ECHO NORMAL
QUERY
Accts | Acctff | Name
| CHECK | CHECK Smith |

ENDQUERY
Message "Viewing SQL; Press any key to continue™
SHOWSQL ; Show the user the SQL translation

GETEVENT KEY "ALL"™ TO the Event ; Hold the SQL translation until a keypress
DO IT! ; Execute the remote query

0 “Viewing the SQL translation of your query” in Chapter 3

SQL...ENDSQL

Syntax

Description

Note

Sends passthrough SQL statements to the database server.

SQL [NOFETCH]
{ SQLText | ~Expression~} ...
ENDSQL

Where SQLText is any valid SQL command and Expression is any valid
PAL expression. Individually, SQLText and Expression can be valid
SQL statements, or they can be combined to create a valid SQL
statement.

PAL sends one or more lines of text contained in SQL...ENDSQL
directly to the server. PAL evaluates any valid PAL expression
enclosed in tildes (~), converts the result to an alphanumeric string,
then passes the string to the server.

You can also include PAL comments within the SQL statement, as in
the following example:

saL

SELECT * ; all fields

FROM Orders ; from Orders table
ENDSQL

Each SQL...ENDSQL command contains only one SQL statement;
you cannot nest SQL statements.

The system variable Retval distinguishes between queries and other
SQL statements. Retval is set to True if the SQL statement returns a
result, and False if it doesn’t. Retval is set to True for a SELECT
statement even if the result is empty. If you do not use the NOFETCH
keyword and the SQL statement returns a result, Paradox fetches the
records and creates a local Answer table. If an Answer table is created,
it’s not displayed on the workspace. Use View from the Paradox
Main menu to view the Answer table and see the resulting records.

Chapter 6, PAL commands and functions 93

SQL...ENDSQL

Use
Example
94 User’s Guide

If you use the NOFETCH keyword and the SQL statement returns a
result, Paradox does not create an Answer table. Use SQLFETCH to
manipulate these results and SQLRELEASE to release the query
when you're done.

Before you use the SQL...ENDSQL statement, you must connect to a
server. The SQL dialect you use must be compatible with this
connection. If the SQL statement produces an answer, and the
NOFETCH keyword is not used, then SQL...ENDSQL must be
executed in Main mode; otherwise, the SQL NOFETCH... ENDSQL
command can be used in any mode.

You can decide when to save (SQLCOMMIT) or abandon
(SQLROLLBACK) changes , regardless of the setting of
SQLAUTOCOMMIT. Paradox never automatically commits remote
changes resulting from SQL...ENDSQL commands. When you use
SQL...ENDSQL, the database server checks the syntax of your SQL
statements. Paradox then traps any run-time errors, which you can
then retrieve in your error procedure using SQLERRORCODE() and
SQLERRORMESSAGE().

Once you have connected to the server, you can send a
SQL...ENDSQL command to the server from the PAL Menu. Press
Alt-F10 to display the menu, choose MiniScript, type in your
SQL...ENDSQL command, and press Enter. Paradox sends the
statement to the database server for processing and displays any
error messages. If your command was a query (and you did not use
NOFETCH), SQL Link retrieves any resulting data in an Answer table.
You can view the Answer table to see the resulting records. For more
information about the MiniScript command, see Chapter 8 of the PAL
Programmer’s Guide.

In a SQL statement, you can substitute any PAL expression by
enclosing it in tildes (~). Paradox evaluates the expression first, then
combines it with the rest of the statement and sends it as one string
to the database server. For example,

Tb1 = "Customer"
sQL
SELECT * ; all fields
FROM ~Tb1~ ; from Customer who
WHERE totalordered > 1000 ; ordered more than $1000
ENDSQL

You can also use the UseSQL utility to send SQL statements to the
server.

You can enclose any valid SQL statement in the SQL...ENDSQL
command. In this example, the command is on a single line:

SQL SELECT * FROM Orders WHERE State = "CA” ENDSQL

SQL...ENDSQL

As in the next two examples, the command can span several lines:

saL
ALTER TABLE Customer ADD (homephone CHAR(14))

ENDSQL

SaL
SELECT * ; select all fields
FROM Maillist ; from mail list for
WHERE Age > 50 ; those over 50 years old
ORDER BY lastname, firstname, phone

ENDSQL

The following example demonstrates how to use the SQLFETCH
command in conjunction with the SQL NOFETCH...ENDSQL and
SQLRELEASE commands. We create an array of names (up to twenty
names can be included) in the remote table Names for a given zip
code, in last-name order. Each SQLFETCH fetches one record from
the remote result. The field values are available to the PAL
application in an array. The first element of the array is not used
(assigned with a null “ ” string), and the rest of the array is filled
with the column values, as in COPYTOARRAY. In this example, those
values are FirstName, Init, and LastNane.

MaxNames = 20
ARRAY FullName[MaxNames]

SQL NOFETCH ; query Names
SELECT DISTINCT FirstName, Init, LastName
FROM Names
WHERE Zip = ~ZipCode()~ ; returns a Zip Code
ORDER BY LastName, FirstName, Init
ENDSQL

FOR I FROM 1 TO MaxNames
SQLFETCH Name
IF RETVAL
THEN FullName[I]=
Name[2] + " " + Name[3] + " " + Name[4]
ELSE
QUITLOOP
ENDIF
ENDFOR

SQLRELEASE ; release the pending query

In the next example, the user is prompted for a SQL command. The
result is stored in a variable, then executed within SQL...ENDSQL:

@ 10,10
?? “Enter SQL command:"
ACCEPT "A50" TO SQLCommand
saL

~SQLCommand~
ENDSQL
If Retval

THEN VIEW "Answer"
ENDIF

Chapter 6, PAL commands and functions 95

SQLAUTOCOMMIT

See also 0 SQLAUTOCOMMIT, SQLCOMMIT, SQLERRORCODEY),
SQLERRORMESSAGE(), SQLFETCH, SQLRELEASE,
SQLROLLBACK, SQLSELECTCONNECT, SQLSTARTTRANS,
and SQLVAL()

Tools ISQL I SQLSave in Chapter 5 of this manual

Chapter 4 of this manual for information on UseSQL, the SQL
command editor

SQLAUTOCOMMIT

Specifies whether Paradox automatically saves changes at the
conclusion of every successful remote operation.

Syntax SQLAUTOCOMMIT { Yes | No }

Description Like the equivalent Tools | SQL | Preferences | AutoCommit menu
command, setting SQLAUTOCOMMIT to Yes tells Paradox to commit
changes at the conclusion of every successful remote operation. When
you set it to No, the server accumulates changes until you are ready
to commit them (with SQLCOMMIT) or roll them back (with
SQLROLLBACK). SQLAUTOCOMMIT only affects changes on
remote tables; Paradox automatically saves your changes to local
tables.

SQLAUTOCOMMIT does not affect implicit commits issued by your
server. Paradox also commits changes automatically after certain
remote operations (such as COPY, CREATE, and DELETE), regardless
of the SQLAUTOCOMMIT setting.

The SQLAUTOCOMMIT setting does not affect updates made using
SQL...ENDSQL. You must always commit those changes explicitly.
Also, setting SQLAUTOCOMMIT to No does not start a transaction.
You might need to use SQLSTARTTRANS to do this if your server
doesn’t do it for you automatically.

Important If you set SQLAUTOCOMMIT to No, you must commit your changes
on the database server before breaking a server connection, making a
new server connection, or exiting Paradox. Otherwise, the server will
roll back your changes when Paradox breaks the connection. The
following operations break a connection:

O selecting a different server connection
0 pressing Ctrl-Break during a remote operation
3 executing the PAL DOSBIG or RUN BIG commands

96 User’s Guide

SQLAUTOCOMMIT

0 using Alt-0 DOSBig
0 exiting Paradox

For an introduction to transaction processing concepts, see the
discussion in Chapter 2 and the “Transaction processing” section
earlier in this chapter.

Use Set SQLAUTOCOMMIT to Yes if you want Paradox to commit
changes for you automatically, or to No if you want to commit or roll
back your changes once you're sure all operations in the transaction
were successful.

The SQLAUTOCOMMIT settings also affect locking after queries. See
your server-specific addendum for details.

Example Suppose you want to add your daily sales data, collected in a local
Paradox table named Dlysales, to two remote tables: Mthsales
containing monthly sales data, and Ytdsales containing all sales to
date. Once added, you then want to delete the daily records to clear
the table for tomorrow’s activity.

This example shows how Paradox automatically commits changes to
remote tables after each operation when SQLAUTOCOMMIT is set to

Yes:

SQLAUTOCOMMIT Yes ;. Paradox saves automatically (default)
ADD "Dlysales" "Mthsales" , after this operation

ADD "Dlysales" "Ytdsales" ; and after this operation

EMPTY "Dlysales" ; and after this operation

The following procedure performs two operations on the database.
Assume that all the tables are remote. The two operations succeed or
fail together, using the error procedure to control this process. (The
error procedure used in this example is shown in the “Transaction
processing” section of this chapter.)

PROC DoTransactionWithQuit()
ErrorProc = "AlwaysRol1backAndQuit"

SQLAUTOCOMMIT No ; turn Paradox commits off
SQLSTARTTRANS . server might require explicit
IF Retval ; transaction start

THEN

ADD "WeekOrd" "Orders"
EMPTY "WeekOrd"

SQLCOMMIT ; all operations succeeded
; commit the transaction
SQLAUTOCOMMIT Yes ; turn Paradox commits on again
ENDIF
RETURN Retval ; return Retval for evaluation
ENDPROC
See also 0 SQLCOMMIT, SQLROLLBACK, and SQLSTARTTRANS

Chapter 6, PAL commands and functions 97

SQLBREAKCONNECT

3 the discussion of transaction processing earlier in this chapter and
in Chapter 2

3 Tools | SQL | Preferences | AutoCommit in Chapter 5 of this manual

your server-specific addendum

SQLBREAKCONNECT

Syntax

Description

Use
Example
98 User’s Guide

Important

Breaks the current server connection.
SQLBREAKCONNECT

Like the equivalent Tools | SQL | Connection | Break menu command,
the abbreviated PAL command SQLBREAKCONNECT rolls back any
open transactions and disconnects from the current server. If you're
not currently connected to a server, SQLBREAKCONNECT has no
effect. SQLBREAKCONNECT does not alter the current connection
parameters.

In general, since any active workstation session requires some
resources from the database server, you can minimize the time spent
connected to it by using SQLBREAKCONNECT. By disconnecting at
the end of a session, or in the middle of an application when you
don’t need to be connected, you can maximize the efficiency of your
server. Use SQLMAKECONNECT to reconnect to the server after
breaking the connection.

If SQLAUTOCOMMIT is set to No and you want to save your
changes, you must explicitly commit your changes on the database
server before breaking the current server connection. Otherwise, the
database server will roll back the changes when Paradox breaks the
connection.

This example causes your workstation to disconnect from the server.
The connection parameters are not reset.

SQLSELECTCONNECT ; let user select a connection
IF Retval ; user connected
THEN
DoSQLWork() ; do some SQL work and commit if necessary
SQLBREAKCONNECT ; finished, don’t need connection function does
DoPdoxWork() ; NOT use SQL features test to see if user can

SQLMAKECONNECT ; still connect to server
; Note: You can let Paradox connect to a server
; automatically, you don’t have to use SQLMAKECONNECT.
IF Retval
THEN DoMoreSQLWork ()
ELSE QUIT "Cannot connect to server"
ENDIF

See also

SQLCLEARCONNECT

SQLBREAKCONNECT
ELSE QUIT "Canceled by user"
ENDIF

7 SQLCLEARCONNECT, SQLCOMMIT, SQLISCONNECT(), and
SQLMAKECONNECT

3 Tools|SQL | Connection | Break in Chapter 5 of this manual

SQLCLEARCONNECT

Syntax

Description

Use

Example

Removes current connection parameters, such as user name and
password.

SQLCLEARCONNECT

Like the equivalent Tools | SQL | Connection | Clear menu command,
the abbreviated PAL command SQLCLEARCONNECT clears the
current server connection, the workspace, and all remote user names
and passwords. SQLCLEARCONNECT does not break the server
connection.

SQLCLEARCONNECT tells Paradox that all menu operations are
local without actually breaking the current connection. Until you
select another server connection, Paradox will not try to access
remote data with selected menu operations. If you select a replica
with a different connection, Paradox then disconnects and rolls back
any uncommitted changes. If you select a replica with the same
connection, Paradox uses the existing connection to reconnect. In
either case, Paradox prompts you for connection parameters.

SQLCLEARCONNECT is useful when you want to make sure that
you are completely disconnected from the current server, prior to
changing connections. It is also useful for removing your user name
and password from memory, like the UNPASSWORD PAL command
or the Tools | Protect | Clear | Password menu choice for Paradox tables.

This example clears the current connection if it is not for the
Microsoft or SYBASE SQL Server and lets the user select the
appropriate connection.

IF SQLCONNECTINFO("Product™) <> "MSSQL"

THEN
SQLCLEARCONNECT ; clear current connection
SQLSELECTCONNECT ; select a new connection
ENDIF

Chapter 6, PAL commands and functions 99

SQLCOMMIT

See also

0 SQLBREAKCONNECT, SQLISCONNECT(), and
SQLMAKECONNECT

Tools | SQL | Connection | Clear in Chapter 5 of this manual
UNPASSWORD PAL command

Password command in Chapter 17 of the Paradox User’s Guide

SQLCOMMIT

Syntax

Description

Important

Use

Example

100 User’s Guide

Commits all open changes on the database server.
SQLCOMMIT

Like the equivalent Tools | SQL | Transaction | Commit command, the
abbreviated PAL command SQLCOMMIT tells the database server to
commit changes at the conclusion of a successful remote operation.
SQLCOMMIT sets Retval to True if the attempt to commit the
transaction succeeds, or to False if it fails (if, for example, Paradox is
not connected to a database server).

If SQLAUTOCOMMIT is set to No and you want to save your
changes, you must explicitly commit your changes on the database
server before breaking the current server connection. Otherwise, the
database server will roll back your changes when Paradox breaks the
connection.

For an introduction to transaction processing concepts, see the
discussion in Chapter 2 and the “Transaction processing” section
earlier in this chapter.

You need to issue an explicit commit for transactions only when
SQLAUTOCOMMIT is set to No or when the command is enclosed
in the SQL...ENDSQL command. This way, you can test to determine
that an operation (or series of operations) was successful before
saving your changes. Use SQLCOMMIT before breaking a server
connection if you want to save your changes; any changes that
haven’t been committed when you break the connection are rolled
back.

In the following example, an error-handling procedure resets a PAL
variable called SQLOk. SQLOKk is used as a flag to stop the
application from processing the current transaction. The error
procedure shouldn’t exit the application because you want to
continue and recover from the error.

See also

SQLCONNECITINFO {)

PROC SQLOkErrorProc()
IF (ERRORCODE() < 1000)
THEN QUIT ERRORMESSAGE() ; any non-SQL error is fatal

ENDIF
SQLOk = False ; flag error to application
RETURN 1 ; just continue

ENDPROC

In the following example, the SQLOK flag is checked after each
operation and determines whether the transaction should continue or
be rolled back. (This example shows nested IFs, but you could also
have the IF statements directly follow one another.)

PROC DoTransactionWithFlag()
ErrorProc = "SQLOkErrorProc”
SQLOk = True
SQLSTARTTRANS server might require

explicit transaction start

IF Retval AND SQLOk
THEN
SQLAUTOCOMMIT No
ADD "WeekOrd" "Orders™
IF SQLOk
THEN EMPTY "WeekOrd"
IF sSQLOk
THEN SQLCOMMIT ; commit the transaction
ENDIF
ENDIF
SQLAUTOCOMMIT Yes
ENDIF
IF (NOT Retval OR NOT SQLOk)
THEN SQLROLLBACK RETURN False
ENDIF
RETURN True
ENDPROC

turn off Paradox commits

turn on Paradox commits again

SQLAUTOCOMMIT, SQLROLLBACK, and SQLSTARTTRANS

the discussion of transaction processing earlier in this chapter and
in Chapter 2

3 Tools |SQL | Transaction | Commit in Chapter 5 of this manual

SQLCONNECTINFO |)

Syntax

Returns connection information about a remote table or from the
current connection.

SQLCONNECTINFO (OptionName [, ReplicaName)

OptionName is one of the following strings. (You can use any
combination of uppercase and lowercase letters.)

Chapter 6, PAL commands and functions 101

SQLCONNECTINFO ()

“TITLE” Returns the title of the connection (as
disialayed when you highlight a remote
table, or when you select a connection).

“DESCRIPTION” Returns the description of the connection.

“PRODUCT” Returns the code name of the associated
server product (see your server-specific
addendum).

“DIALECT” Returns the code name for the SQL

dialect (see your server-specific
addendum).

ReplicaName is the name of a replica for a remote table, which tells
SQLCONNECTINFO() to return the connection information for that
remote table.

Description SQLCONNECTINFO() returns connection information about a
remote table or the current connection. If you specify ReplicaName,
SQLCONNECTINFOQ) returns information about that replica.
Otherwise, it returns information on the current connection.

SQLCONNECTINFO() returns an empty (“”) string if the table you
specify is not a replica, or if you don’t specify a table name and the
connection has not been set.

Use Use SQLCONNECTINFO() to verify that a user has selected an
appropriate connection, or to retrieve the connection description and
display it.

Example This example tests that a connection has been selected:

conntitle = SQLCONNECTINFO("TITLE")

IF conntitle = "
THEN MESSAGE "Connection is currently not set."
ELSE MESSAGE "Connection is ", conntitle

ENDIF

The following example verifies that the dialect of the selected server
connection is compatible with the SQL statements used in
SQL...ENDSQL (that is, SQL statements written for the IBM
Extended Edition dialect):

WHILE True
SQLSELECTCONNECT ; select a connection
conndial = SQLCONNECTINFO("DIALECT")
IF conndial = "IBMEE" ; right connection
THEN
canusethis = "Y" ; can continue
QUITLOOP
ELSE MESSAGE "Cannot use selected connection for this application”
SLEEP 3000
MESSAGE "Try again (Y/N)?"
ACCEPT "Al"™ TO Response
IF NOT Retval

102 User’s Guide

See also

SQLERRORCODE ()

THEN RETURN
ENDIF
IF UPPER (Response) <> "Y"
THEN
canusethis = "N"
QUITLOOP
ENDIF
ENDIF
ENDWHILE
IF canusethis = "N"
THEN RETURN "Will not continue with remote operations™
ENDIF

0 SQLISREPLICA() and SQLMAPINFO()

SQLERRORCODE ()

Syntax

Description

Use

See also

Returns the server code of the most recent error on the database
server.

SQLERRORCODE ()

SQLERRORCODE() takes no arguments. It returns a string indicating
the most recent error on the database server, or an empty (“”) string
if no error has occurred. If the database server produces a numeric
value instead of a string, SQLERRORCODE() converts the number to
a string.

SQLERRORCODEY() lets you see what kind of run-time error or error
condition has occurred on the database server. In conjunction with
the global variable Errorproc, SQLERRORCODE() lets you build an
error-handling routine for remote operations into your application.
SQLERRORCODE() reports on remote errors only; use
ERRORCODE) to trap errors that occur in the local Paradox
environment.

SQLERRORCODE() returns the server-specific error code. In other
words, for the same type of error, the value returned on one database
server product may differ from that of another. See your server
manuals for more information about the error codes for your
particular server and your server-specific addendum for an example.

Use SQLERRORCODE() to create an error-handling routine for
remote operations within your application. For examples and more
information, see the discussion in “Error handling” earlier in this
chapter.

0 ERRORCODE(), ERRORMESSAGE(), and SQLERRORMESSAGE()

Chapter 6, PAL commands and functions 103

SQLERRORMESSAGE ()

3 the discussion of error handling earlier in this chapter and in
Chapter 7 of the PAL Programmer’s Guide

ERRORCODE() function in the PAL Reference

your server-specific addendum

SQLERRORMESSAGE ()

Syntax

Description

Use

See also

Returns the message of the most recent run-time error.

SQLERRORMESSAGE ()

SQLERRORMESSAGE() takes no arguments. It returns a string
containing the text of the most recent run-time error or error
condition on the database server, or a blank (" ”) string if no error has
occurred.

SQLERRORMESSAGE() is used to retrieve the message generated by
the server when the last error occurred. SQLERRORMESSAGE()
reports on remote errors only. Use ERRORMESSAGE() to return the
message text of a local error.

Use SQLERRORMESSAGE() to create an error-handling routine for
remote operations within your application. See the discussion of
“Error handling” earlier in this chapter, and your server-specific
addendum for an example.

ERRORCODE(), ERRORMESSAGE(), and SQLERRORCODE()

the discussion of error handling earlier in this chapter and in
Chapter 7 of the PAL Programmer’s Guide

ERRORMESSAGE() function in the PAL Reference

your server-specific addendum

SQLFETCH

Syntax

Description

104 User’s Guide

Fetches one record at a time and copies it to an array.

SQLFETCH ArrayName

SQLFETCH is used in conjunction with the SQL
NOFETCH...ENDSQL construct. You must use the NOFETCH

Use

Example

See also

Note

SQLFETCH

keyword in SQL...ENDSQL before using this command. NOFETCH
tells Paradox to let the PAL programmer choose when to fetch the
result. SQLFETCH fetches one record at a time and copies it to a
specified array. The first element of the array is not used (and is
assigned a null “” string). The rest of the array is filled with the field
values from your SELECT statement in the same format as
COPYTOARRAY.

Retval is set to True if SQLFETCH returns a record and False if it does
not.

Use SQLFETCH in the following situations:

3 when you need only one value (or a small set of values) returned
from a remote query (when not all Anstwer results are needed)

7 when you're in Edit or CoEdit mode and you want to insert a
remote value into a local table, or do lookups on remote tables
while you're editing

3 when you want to show the results after fetching only the first

few records, without waiting for all records to be collated in the
Answer table

7 when you want more control over your remote query results

You must use SQLRELEASE after your last SQLFETCH operation to
release the pending query.

You cannot reference the field names directly as you can in
COPYTOARRAY; you can only reference the field positions (1
through ArraySize(ArrayName)).

This procedure returns the number of records in a table passed as a
parameter:

PROC GetRecCount(Tbl1); ; returns number of records in table
PRIVATE Rec
SQL NOFETCH
SELECT COUNT(*)

FROM ~Tb1~
ENDSQL
SQLFETCH Rec ; fetch single record into array
SQLRELEASE ; release the pending query
RETURN Rec[2] ; second array element is the first
; field returned by the query
ENDPROC

0 SQL...ENDSQL and SQLRELEASE
9 COPYFROMARRAY and COPYTOARRAY in the PAL Reference

Chapter 6, PAL commands and functions 105

SQLISCONNECT ()

SQLISCONNECT ()

Syntax

Description

Use

Example

See also

106 User’s Guide

Determines whether Paradox is currently connected to a server.

SQLISCONNECT ()

SQLISCONNECT() tells whether you're currently connected to a
server, and returns True if you are or False if you're not.

Use SQLISCONNECT() to see if a server connection is active.

This example shows how to test for a server connection before
attempting to commit or roll back a transaction:

PROC EndTrans(DoCommit)
IF (SQLISCONNECT()) ; connected to a server
THEN
IF (DoCommit)
THEN SQLCOMMIT
ELSE SQLROLLBACK
ENDIF
IF (NOT Retval)
THEN QUIT "Commit Failed: " + ERRORMESSAGE()

ENDIF
ELSE ; not connected to a server
QUIT "Not connected to a server"
ENDIF
ENDPROC

The next example shows a procedure you could use to establish
server connections:

PROC ConnectStatus()
IF SQLISCONNECT() THEN
msg = "connected to server"
ELSE
IF NOT SQLCONNECTINFO("TITLE™) THEN
SQLMAKECONNECT
IF RetVal
THEN msg = "Reconnected to server"
ELSE
msg = "Can’t connect to server”
ENDIF
ELSE
msg = "No connection specified”
ENDIF
ENDIF
RETURN msg
ENDPROC

7 SQLBREAKCONNECT, SQLCLEARCONNECT,
SQLMAKECONNECT, and SQLSELECTCONNECT

SQLISREPLICA ()

SQLISREPLICA {)

Syntax

Description

Use

Example

See also

Finds out whether a table is a local table or a replica.

SQLISREPLICA (TableName)

TableNane is a string expression containing a Paradox table name.

SQLISREPLICA() returns True if TableName is a replica, or False if it's
not. SQLISREPLICA() also returns False if the specified TableName
doesn't exist or is not a valid table or replica.

You can use SQLISREPLICA() to verify that a table is a replica before
attempting to use it for a remote operation on the server or before
using SQLMAPINFO() or SQLCONNECTINFO(), described
elsewhere in this chapter.

This example tests whether a table is remote before renaming it:

IF ISTABLE("Orders™)
THEN
IF SQLISREPLICA("Orders™)
THEN
COPY "Orders"™ "LocOrd™
DELETE "Orders"
ELSE RENAME "Orders" "LocOrd"
ENDIF
ENDIF

a9 SQLCONNECTINFO() and SQLMAPINFO(

SQLMAKECONNECT

Syntax

Description

Attempts to reconnect to the server specified by the current
connection.

SQLMAKECONNECT

Like the equivalent Tools | SQL | Connection | Make menu command,
the abbreviated PAL command SQLMAKECONNECT attempts to
reconnect to the server using the current connection. If a connection is
not currently resident in memory, a script error results.

SQLMAKECONNECT sets Retval to True if the connection succeeds,
or to False if it fails. If the connection fails, you can retrieve the
reason for failure by using the error-handling functions

Chapter 6, PAL commands and functions 107

SQIMAKECONNECT

ERRORCODE(), ERRORMESSAGE(), SQLERRORCODE(), and
SQLERRORMESSAGEQ).

Important You must explicitly commit your changes on the database server
before making a new connection if you want to save your changes.
Otherwise, the database server automatically rolls back the changes
when Paradox breaks the connection.

Use Use SOLMAKECONNECT to reconnect to the server after breaking
the connection in one of the following ways:

by selecting a different server connection

by pressing Ctrl-Break during a remote operation

by executing the PAL DOSBIG or RUN BIG commands

by using Alt-0 DOSBig

by exiting Paradox

Q O o a a

Paradox automatically attempts to reconnect to the server after your
connection is broken at

O the first PAL or command menu that accesses a replica
0 the first SQL... ENDSQL command
O the next SQLSTARTTRANS

Note SQLBREAKCONNECT attempts to reconnect to the global connection
if you have both a main connection and a replica connection.

Example This example uses SQLMAKECONNECT to test a broken connection
before reconnecting:
SQLSELECTCONNECT ; let user connect to server
IF Retval ; if Retval True, then connection has succeeded
THEN
DoSQLWork() ; do some SQL work and commit if necessary

SQLBREAKCONNECT ; finished, don’t need connection anymore

DoPdoxWork() ; this function does not use SQL features
SQLMAKECONNECT ; test to see if user can still connect to server
; Note: You can let Paradox connect to a server,
; you don’t have to use SQLMAKECONNECT.
IF Retval
THEN DoMoreSQLWork ()
ELSE QUIT "Cannot connect to server"
ENDIF
SQLBREAKCONNECT
ELSE QUIT "Canceled by user"
ENDIF

See also 0 SQLBREAKCONNECT, SQLCLEARCONNECT,

SQLISCONNECT(), SQLSELECTCONNECT, and
SQLSETINTERRUPT

108 User’s Guide

SQIMAPINFO ()

7 Tools | SQL | Connection | Make in Chapter 5 of this manual

SQLMAPINFO {)

Syntax

Description

Use

Example

Returns structural information about a remote table.

SQLMAPINFO (OptionName, TableName [, ColumnNumber 1)

OptionName is one of the following strings (you can use any
combination of uppercase and lowercase letters):

“TABLENAME" Returns the remote table name.

“COLUMNNAME” Returns the name of the remote column
specified by ColumnNumber.

“COLUMNTYPE” Returns the type of the remote column
specified by ColumnNumber.

TableName is a replica name.

ColumnNumber is the ordinal number of the field in the remote table;
it is required if you specify “COLUMNNAME” or “COLUMNTYPE”
for OptionName.

SQLMAPINFO() gives you information about the structure of a
remote table from its replica. This is useful if you want to work
directly with the table using the SQL...ENDSQL command.
SQLMAPINFOQ) results in an error if you specify an invalid table
name, if the table you specify is not a remote table, or if the column
number you specify is out of range.

Use SQLMAPINFO() to return structural information about a remote
table.

This example retrieves the name of the third column in the remote
table Orders, assigns that name to the variable Getfield, then
substitutes that name in the SQL statement enclosed within the
SQL...ENDSQL command:

Getfield = SQLMAPINFO("ColumnName","Orders",3)
SaL

SELECT * FROM Orders

WHERE ~Getfield~ = 0
ENDSQL

You can also do it this way:

Chapter 6, PAL commands and functions 109

SQLRELEASE

See also

saL
SELECT * FROM Orders
WHERE ~SQLMAPINFO("ColumnName","Orders™,3)~ =
; uses name of third column
ENDSQL

The following example fills an array with all field names and field
types:

DYNARRAY Rtable
FOR i FROM 1 to NFIELDS("ORDERS™)
Rtable [SQLMAPINFO("ColumnName","ORDERS",i)]=
SQLMAPINFO("ColumnType", "ORDERS", i)
ENDFOR

0 SQLCONNECTINFO() and SQLISREPLICA()

SQLRELEASE

Syntax

Description

Use

Example

See also

110 User’s Guide

Releases the pending query:.

SQLRELEASE

SQLRELEASE is used after the SQLFETCH command to prepare
Paradox for another query. You must use SQLRELEASE after each
SQL NOFETCH...ENDSQL command.

Use SQLRELEASE to release the resources used for the last
SQLFETCH. If you do not use SQLRELEASE to release the pending
query, a script error results when you attempt another query.

This procedure returns the number of records in a table passed as a
parameter:

PROC GetRecCount(Tb1)
PRIVATE Rec
SQL NOFETCH
SELECT COUNT (*)
FROM ~Tb1~
ENDSQL
SQLFETCH Rec ; fetch single record into array
SQLRELEASE ; release the pending query
RETURN Rec[2]
ENDPROC

9 SQL...ENDSQL and SQLFETCH

SQLRESTORECONNECT

SQLRESTORECONNECT

Syntax

Description

Use

Example

See also

Restores a connection saved with SQLSAVECONNECT.
SQLRESTORECONNECT

SQLRESTORECONNECT restores the connection saved by the most
recent use of SQLSAVECONNECT. (Once you restore a connection, it
clears the stored connection from memory.) SQLRESTORECONNECT
also clears the current connection from memory, so you must first
issue another SQLSAVECONNECT to save connections if you may
need them again. In this case, the last-saved connection in memory is
overwritten. If no setting has been saved, SQLRESTORECONNECT
clears the current connection.

Use SQLRESTORECONNECT to restore a saved connection.

This example restores the connection saved with

SQLSAVECONNECT:

SQLSAVECONNECT ; saves current connection

SQLSELECTCONNECT ; select new connection

IF Retval ; user selected a connection
THEN Do _Work() ; do work on different server

ENDIF

SOLRESTORECONNECT : return to previous connection

a9 SQLSAVECONNECT and SQLSELECTCONNECT
3 Tools | SQL [Connection | Select in Chapter 5 of this manual

SQLROLLBACK

Syntax

Description

Rolls back changes on the database server.
SQLROLLBACK

Like the equivalent Tools | SQL | Transaction | RolIBack menu
command, the abbreviated PAL command SQLROLLBACK tells the
database server to roll back current changes at the conclusion of an
unsuccessful remote operation or transaction. If SQLAUTOCOMMIT
is set to Yes, Paradox automatically commits your remote changes
immediately after every operation so you cannot roll back changes.

If SQLAUTOCOMMIT is set to No, you must commit or roll back
remote changes yourself. Paradox never commits changes resulting

Chapter 6, PAL commands and functions 111

SQLROLLBACK

Use
Example
112 User’s Guide

Important

Note

from SQL...ENDSQL operations, so you must always commit or roll
back these changes yourself. SQLROLLBACK abandons changes to
remote tables but not to local tables; Paradox always saves local table
changes automatically.

SQLROLLBACK sets Retval to True if the attempt to roll back the
transaction succeeds, or to False if it fails (if, for example, Paradox is
not connected to a database server). This command lets you test if the
rollback succeeded in the script and traps the error if it did not.

You will get a script error if you use SQLROLLBACK and you have
not specified a connection.

If SQLAUTOCOMMIT s set to No, you must explicitly commit your
changes on the database server before breaking the current
connection. Otherwise, the database server will roll back your
changes when Paradox breaks the connection.

If your server does not automatically start a transaction and
SQLAUTOCOMMIT is set to No, you must use SQLSTARTTRANS if
you want to be able to roll back changes on that server (see your
server-specific addendum for more information).

For an introduction to transaction processing concepts, see the
discussion in Chapter 2 and the “Transaction processing” section
earlier in this chapter.

SQLROLLBACK lets you abandon changes to remote tables if an
operation (or series of operations) was not completed successfully.
This ensures the maintenance of data integrity in the event of an error.

This example shows how to roll back changes if an error occurs
during a transaction. You don’t need to set SQLAUTOCOMMIT to
No because the only SQL statement in this example is enclosed in a
SQL...ENDSQL command, which Paradox never automatically
comimits.

PROC SetSQLError()
PdoxCode = ERRORCODE()
IF(PdoxCode >= 1000)
THEN RETURN 1 ; SQL errors are left for
; application to handle
ELSE QUIT ERRORMESSAGE() ; any other error is fatal
ENDIF
ENDPROC

PROC DoTransaction()

ErrorProc = "SetSQLError”

PdoxCode = 0

SQLSTARTTRANS ; server might require explicit

; transaction start
IF (Retval AND PdoxCode = 0)
THEN VIEW "LocCust"

SCAN FOR [CustName] = "John Smith"
SaL

See also

SQLSAVECONNECT

INSERT INTO Orders (Ordnum, Quantity)
VALUES (~[OrdNum]~,~[Quantity]~)
ENDSQL
IF PdoxCode <> 0
THEN ; error procedure called
SQLROLLBACK ; roll back and return
RETURN False
ENDIF
ENDSCAN
SQLCOMMIT
ENDIF
RETURN Retval
ENDPROC

SQLAUTOCOMMIT, SQLCOMMIT, and SQLSTARTTRANS

the discussion of transaction processing earlier in this chapter and
in Chapter 2

7 Tools | SQL | Transaction | RollBack in Chapter 5 of this manual

SQLSAVECONNECT

Syntax

Description

Use

Example

Temporarily saves the current connection.
SQLSAVECONNECT

SQLSAVECONNECT temporarily saves the current connection in
memory. This enables you to select and use other connections, then
return to this saved connection (using SQLRESTORECONNECT)
when you're through. SQLSAVECONNECT overwrites any
connection saved with a previous SQLSAVECONNECT. If there is no
connection, SQLSAVECONNECT has no effect.

In an application, you'll usually save a connection with
SQLSAVECONNECT before you connect to another server. When you
have completed your work on the other server, you can use
SQLRESTORECONNECT to return to the previous connection.

This example saves your connection while you use another server
connection:

SQLSAVECONNECT ; save current connection

SQLSELECTCONNECT ; select different connection

IF Retval ; user selected a connection
THEN DoWork() ; do work on different server
ELSE MESSAGE "Current connection not changed"

ENDIF

SQLRESTORECONNECT ; restore previous connection

Chapter 6, PAL commands and functions 113

SQLSELECTCONNECT

See also 3 SQLRESTORECONNECT and SQLSELECTCONNECT
0 Tools | SQL | Connection | Select in Chapter 5 of this manual

SQLSELECTCONNECT

Selects a server connection.

Syntax SQLSELECTCONNECT [{ PRODUCT ProductName | TITLE Title }
VALUES Parameterlist]

If you use SQLSELECTCONNECT with no parameters, Paradox
displays the Set Connections screen (a list of available connections to
choose from), and then prompts for the appropriate connection
parameters. Retval is set to True if the user chooses a connection and
to False if the user cancels without choosing a connection.

You can use either the PRODUCT or TITLE keywords to indicate the
connection. ProductName is the code name of the server product (see
your server-specific addendum). Title is the connection name shown
on the SQL Connections screen (see Chapter 7).

ParameterList is a comma-separated list of the connection parameters
required for this connection (see your server-specific addendum).
Connection parameters must be entered in the same sequence as they
appear on the SQL Connections screen (see Chapter 7).

Description Like the equivalent Tools | SQL | Connection | Select menu command,
the abbreviated PAL command SQLSELECTCONNECT lets you
select a server connection. Paradox uses this connection for all
operations in the current session (until you select another connection).

Use For certain operations (like SQL...ENDSQL, CREATE REMOTE,
SQLSTARTTRANS, SQLROLLBACK, and SQLCOMMIT), you need
to connect to the server first; SQLSELECTCONNECT lets you do so.
You can test the selected connection for compatibility with your
application by using SQLCONNECTINFO().

For other commands, you can make the connection by using a replica
and entering the user name and password, if required. You must
explicitly connect to the server if the first operation your application
performs

O creates a replica (like CREATE REMOTE)
O uses SQL passthrough (like a SQL...ENDSQL command)

114 User’s Guide

SQLSETINTERRUPT

Example This example prompts the user to choose a connection:

SQLSELECTCONNECT ; select a connection
IF Retval ; user selected a connection
THEN DoWork() ; do work on this server
ELSE MESSAGE "Connection not selected”
ENDIF

This example sets the connection for the Microsoft or SYBASE SQL
Server:
SQLSELECTCONNECT PRODUCT "MSSQL™ ; select a server connection

VALUES "mary"™, "null™, "mis", "cust" ; user name, password, server,
; and database

See also 0 SQLBREAKCONNECT, SQLCLEARCONNECT,
SQLCONNECTINFO(), SQLMAKECONNECT,
SQLRESTORECONNECT, and SQLSAVECONNECT

3 Tools | SQL | Connection | Select in Chapter 5 of this manual

3 Chapter 7 of this manual for information on SQL Setup

SQLSETINTERRUPT

Determines whether Paradox interrupts a remote PAL operation
when the user presses Ctrl-Break.

Syntax SQLSETINTERRUPT { Yes | No }

Description Like the equivalent Tools | SQL | Preferences | SetInterrupt menu
command, the abbreviated PAL command SQLSETINTERRUPT tells
Paradox whether to let the user interrupt the current PAL remote
operation. If SQLSETINTERRUPT is Yes (the default), Paradox
interrupts the operation when the user presses Ctrl-Break, rolls back
any open transactions, breaks the server connection, and returns an
error message (error code 1003). If SQLSETINTERRUPT is No and
the user presses Ctrl-Break, Paradox waits for the remote command to
finish executing, then halts the script.

Use By default, SQLSETINTERRUPT is set to Yes, which lets the user
interrupt a remote operation. This can be useful, for example, if a
user attempts an operation on a remote table that is locked or
running a long query. A user can also use Ctrl-Break if they want to
stop a query that is returning too many records.

You would set SQLSETINTERRUPT to No during an operation or
series of operations that you wanted to complete without having to
handle all the cases where the user might interrupt it.

Chapter 6, PAL commands and functions 115

SQLSTARTTRANS

Example

See also

This example shows you how you can control the effect of pressing
Ctrl-Break while adding data between two remote tables:

SQLSETINTERRUPT Yes ; user can interrupt
ADD "Orders™ "Dlysales"
SQLSETINTERRUPT No ; user cannot interrupt

EMPTY "Orders"

0 Tools | SQL | Preferences | SetInterrupt in Chapter 5 of this manual
0 CTRLBREAK command in the PAL Reference

SQLSTARTTRANS

Syntax

Description

Note

Use

116 User’s Guide

Starts a transaction on the database server.
SQLSTARTTRANS

Like the equivalent Tools | SQL | Transaction | Start menu command,
the abbreviated PAL command SQLSTARTTRANS begins a
transaction on the database server. All subsequent operations are
grouped in the current transaction until they are committed (using
SQLCOMMIT) or rolled back (using SQLROLLBACK).

SQLSTARTTRANS sets Retval to True if the transaction begins
successfully, and to False if it fails (for example, if Paradox is not
currently connected to a server). This lets you test for successful
transactions in the script and traps the error if the transaction failed.

You might not need to use this command. Some database servers
require that you explicitly start a new transaction when you commit
or roll back operations, while other servers automatically start a new
transaction for you. You must use SQLSTARTTRANS to begin a
transaction on those database servers that require you to do so
explicitly. See your server-specific addendum to find out how your
database server manages transactions.

Once you have committed or rolled back a transaction, you might
need to issue SQLSTARTTRANS to begin the next transaction.

If your server does not automatically start a transaction and SQL
AUTOCOMMIT is set to No, you must use SQLSTARTTRANS if you
want to be able to roll back changes on that server. If your database
server starts a transaction automatically, SQLSTARTTRANS has no
effect. It’s best to include SQLSTARTTRANS in any application that
might run on a server that requires it.

Example

See also

SQLVAL ()

This example shows how to start a transaction on a database server.
The SetSQLError procedure sets PdoxCode to the value of the error
code that occurs.

PROC DoTransaction()
ErrorProc = "SetSQLError”
PdoxCode = 0
SQLSTARTTRANS ; server might require explicit
; transaction start
IF (Retval AND PdoxCode = 0)
THEN
VIEW "lLocCust"
SCAN FOR [CustName] = "John Smith"
SQL
INSERT INTO Orders (OrdNum, Quantity)
Values (~[OrdNum]~,~[Quantity]~)
ENDSQL
IF PdoxCode <> 0
THEN SQLROLLBACK
RETURN False
ENDIF
ENDSCAN
SQLCOMMIT
ENDIF
RETURN Retval
ENDPROC

0 SQLAUTOCOMMIT, SQLCOMMIT, and SQLROLLBACK

0 Tools | SQL | Transaction | Start in Chapter 5 of this manual

SQLVAL ()

Syntax

Description

Translates a PAL expression to a valid SQL expression (for use in
SQL...ENDSQL statements).

SQLVAL (Expression)

SQLVAL() accepts a PAL expression and translates it to a SQL string
as follows:

0 If Expression evaluates to a blank value, SQLVAL() returns the
string “NULL".

0 If Expression is an alphanumeric value, SQLVAL() returns the

string + Expression + “ " .

Iz

0 If Expression is an alphanumeric value and it contains one or more
embedded single-quote characters, SQLVAL() delimits the quote
characters.

0 If Expression is a numeric (N, S, or $) value, SQLVAL() returns the
string “Expression”.

Chapter 6, PAL commands and functions 117

SQLVAL ()

0 If Expression is a date value, SQLVAL() returns a date expression
that complies with the dialect of the current connection.

You must select a connection before using SQLVAL() because
SQLVAL() uses the target SQL dialect from the current connection.

Use Use this function to prepare a PAL expression for inclusion in
SQL...ENDSQL commands. SQLVAL() handles type translation and
blank values (which are translated to the keyword NULL), and
translates PAL expressions into the appropriate SQL dialect.

Example The following examples show how SQLVAL() translates expressions
to the values that the server is expecting. The first example uses these
variables:

Name = "John"

LastName = "Smith"

Date = TODAY() ; say 10/06/90
Number = 3.5

Address = ""

Zip = BLANKNUM()

Given the following query,

SaL
INSERT INTO RemTab
VALUES(~SQLVAL(Date+1)~,~SQLVAL(Name)~,~SQLVAL(LastName)~,
~SQLVAL(Number*3)~,~SQLVAL(Zip)~,~SQLVAL(Address)~)
ENDSQL

and assuming that the current connection uses the ORACLE dialect,
the following query will be sent to the server:

SaL
INSERT INTO RemTab
VALUES(TO_DATE(*10/07/90", MM/DD/YYYY*), *John’, "Smith’,
10.5,NULL,NULL)
ENDSQL

The second example shows how you can update data on the server
by scanning the local table (LClients) and performing UPDATE
queries (assuming no client has a blank ID):

VIEW "LClients”
SCAN
sqL
UPDATE Client
SET Address = ~SQLVal([ADDRESS])~,ZipCode = ~SQLVal([ZIP])~
WHERE ClientId = ~SQLVAL([ID])~
ENDSQL
ENDSCAN

Given this LClients table,

118 User’s Guide

SQLVAL ()

Table 6-8 [Clients table

ID (N) Name (A25) Address (A25) Zip (N)
137 Rick Jones

123 John Smith 1800 Market 94114

145 Steve Doe 123 'I' Street - 95001

the following commands will be sent to the server:

UPDATE Client
SET Address = NULL, ZipCode = NULL
WHERE Clientld = 137

UPDATE Client

SET Address = ’1800 Market’, ZipCode = 94114
WHERE Clientld = 123

UPDATE Client

SET Address = "123 *’I'’ Market’, ZipCode = 95001
WHERE Clientld =145

Note that the ‘I’ character is enclosed in single quotes.

Memo fiells While Paradox supports fields of type M (memo fields), as do many
database servers, SQL Link does not. You cannot use SQL Link to
create memo fields. If you view data from memo fields in remote
tables, it appears as a field type A255.

See also g SQL...ENDSQL

BLANKDATE(), BLANKNUM(), ISBLANKA(), and STRVAL()
functions in the PAL Reference

0 the discussion of nulls in Chapter 2 of this manual

Chapter 6, PAL commands and functions 119

120 User’s Guide

CHAPTER 7

The SQL Setup program

This chapter tells you how to use the SQL Setup program to create
replicas and to configure the Paradox environment to fit your
particular needs.

When to use SQL Setup

SQL Setup extends Paradox SQL Link’s functionality by letting you
create replicas and add and customize server connections. While you
can use SQL Link without ever running SQL Setup, you can access
only remote tables created in Paradox. Use SQL Setup if you want to
work with the following types of remote tables in Paradox:

O tables created with programs other than Paradox

O tables created with the PAL SQL...ENDSQL command or with
UseSQL

O tables with replicas stored in a directory that you don’t have
access to (for example, a replica that is stored in another user’s
private directory or on another user’s local drive)

O tables with obsolete replicas (for example, tables that have been
restructured outside Paradox)

To work with one of these types of tables, you need to create a replica
for the existing remote table. Paradox uses that replica to locate the
table on the database server.

SQL Setup lets you use Paradox to work with SQL views. Like
remote tables, you need to create a replica to access remote views;
then you can treat them just as you would any other remote table.

SQL Setup also lets you add custom connections, modify existing
connections, or delete connections that you no longer need. You can
customize a connection for an individual user, for a group of users, or

Chapter 7, The SQL Setup program 121

Creating replicas

Note

Using views on wide tables

Field names with spaces

Customizing server
connections

122

User’s Guide

for a particular application. You can also password-protect each
connection.

SQL Setup is available anywhere in Paradox by playing the SQLSetup
script or by choosing =1 Utilities | SQL Setup.

As discussed in Chapter 2, a replica is a special local Paradox table
that represents a remote table on a database server. A replica contains
the connection information Paradox needs to find the table on the
server, and the structural information it needs to work with the data
in the table.

When you use Paradox to create a new remote table (by choosing
Create | Remote or Tools | Copy from the Paradox Main menu, or by
issuing the CREATE or COPY command in a PAL program), Paradox
automatically creates the corresponding local replica.

If you create a remote table in any other way, however, you need to
use SQL Setup to create a replica so Paradox can access it. Unless the
structure of (or connection to) a remote table changes, or the replica is
deleted or moved beyond your access, you need to create its replica
only once. (The connection to a remote table can change if the name
of the server or your access and path to the server changes.)

SQL Setup always creates replicas in the current working directory.
You must have full rights in the current directory and have exclusive
use of the directory while creating replicas with SQL Setup.

The maximum Paradox record size for keyed (indexed) tables is 1350
bytes; for unkeyed (nonindexed) tables it’s 4000 bytes. To replicate
tables with larger record lengths, create a view on a subset of the
fields in these tables. If tables can’t be replicated, or must be
renamed, SQL Setup creates a table called SQLProbs containing a list
of the problem tables along with descriptions of the problems
encountered.

SQL Setup does not replicate tables whose field names contain spaces
(for example, “LAST NAME"). If SQL Setup encounters spaces in
column names, it puts the table name in the SQLProbs table.

After SQL Setup finishes, you can create a report showing tables that
were replicated, along with their field names and field types.

SQL Link comes with a default server connection for each server it
supports. A server connection identifies the type of remote server and
its SQL dialect, and contains title and description information that
Paradox displays when you select the connection or when you work
with a remote table. In addition, each connection contains connection
parameters, such as user name and server name, that the server

requires for access. See your server-specific addendum for details of
these connection parameters.

When you choose Tools | SQL | Connection | Select from the Paradox
Main menu, or when you issue SQLSELECTCONNECT from a PAL
application, Paradox displays a list of server connections. While you
can use the default connections that come with SQL Link to
communicate with your server, SQL Setup lets you add custom
connections to this list to fit the needs of a single user, a group of
users, or an application.

For example, you can use SQL Setup’s Connection | Customize option
to modify the title information for a particular connection so that
Paradox displays a title like “Personnel Data” to users rather than the
type of server. You can also supply the network name of the server so
that users don’t have to type it in each time. If you have more than
one database server, you could set up custom connections to each
server for each user or for a group of users.

SQL Setup function You can use the following function keys almost anywhere in SQL
keys Setup:

0 F1 Help displays help on how to use the options available from
SQL Setup’s Main menu.
F2 Do _It! saves changes and proceeds to the next step.

F10 Menu displays a menu for the current screen. Standard menu
choices include

7 Help (the equivalent of pressing F7 Help)
7 DO-IT! (the equivalent of pressing F2 Do_It!)

o Cancel abandons the current operation and returns to the
previous menu

In addition, some screens have function keys for special operations
that are applicable only in those situations. For example, in the Type
Convert screen, you can press Spacebar to toggle between numeric
and currency data types.

Before you start soL If you plan to create replicas, make sure your working directory is

Setup the one where you want to save replicas. You must have write
privileges in this directory and exclusive use of it (no other users can
enter the directory or use any of the tables stored in it during your
SQL Setup session). Tools | More | Directory changes your working
directory.

Chapter 7, The SQL Setup program 123

Starting SQL Setup

You can start SQL Setup by choosing =1 Utilities | SQL Setup.

= View Ask Report

Next
Maximize/Restore
Size/Move

Close

Window

Interface
Desktop
Video

Editor
Utilities

Custom
Workshop
SQLSetup
UseSQL

The Main menu options in SQL Setup are described in the following
table:

Table 7-1 SQL Setup menu options

Menu Description

Connection Identifies and modifies the server connection.

MakeReplicas Creates replicas for existing remote tables.

Help Provides help about how to use the options in the SQL
Setup Main menu.

Exit Exits the SQL Setup Program and returns to the Paradox
Main menu.

The rest of this chapter discusses how to work with each of the
menus in the SQL Setup Program, and is organized by menu topic.

Connection

124 User’s Guide

Once you establish a server connection, all options on the SQL Setup
Main menu are available; otherwise, the option to create replicas is
unavailable.

The SQL Setup Connection menu options are described in the
following table:

Table 7-2 SQL Setup Connection menu options

Menu option

Description

Select

Make

Break

Status

Customize

Specifies a server connection if you are not connected to a
server. If you have a connection established but want to
change it, you can use this option to break the current
connection and establish a new one.

Re-establishes the server connection stored in memory after
you use ConnectionlBreak or break the connection some
other way.

Breaks the current server connection without immediately
establishing another connection. Information about the
connection remains in memory.

Displays one of three different messages indicating the
status of a connection:

1. Connected to <servername> (if you're connected to a
server)

2. Connection set to <servername> (if you've specified a
server connection but aren’t currently connected)

3. Not connected to a server (if you haven't specified a
connection)

Creates a customized connection to a supported database
server. Customized connections can have descriptive names
and you can specify parameters that users would otherwise
need to enter each time they wanted to connect to a server.
You don’t need to be connected to a server to use
Customize.

If you didn’t establish a connection prior to starting SQL Setup, you
can use Connection | Select to do so. SQL Setup displays a list of
existing connections and lets you select one of them, as shown in the

fll 1BM 0S/2 DBM

Standard connection IBM 0S/2
Database Manager

i Microsoft, SYBASE SQL Server Standard connection Microsoft and

~ ORACLE

VAX Rdb/VMS

SYBASE SQL Server

. Standard connection ORACLE

Standard connection VAX Rdb/VMS

- MDI Database Gateway to DB2 Standard connection DB2 via MDI

Database Gateway

the cursor to the connection you want and press [F2] to select it

Chapter 7, The SQL Setup program 125

Selecting a connection

Customizing a
connection

126 User’s Guide

Caution

To select a connection, press | until you reach the desired connection,
then press F2 Do _It!.

A screen similar to the following one appears.

Connection Parameters ———————

Parameter Value
Remote user name
Password

Host

[F2] DO-IT! (F10] Menu

Type the connection parameters required to access the appropriate
database, then press F2 Do_It!. For information about the connection
parameters required for your server, consult your server-specific
addendum. SQL Setup then diplays your new connection. Press Enter
or click OK to close the dialog box.

Paradox stores customized connections in a file called
PARADOX.DSQ. When you choose Connection | Customize from the
SQL Setup Main menu, SQL Setup searches for the PARADOX.DSQ
file in the current directory. If PARADOX.DSQ is not in the current
directory, SQL Setup searches the Paradox system files directory, then
continues to search along the DOS path. SQL Setup uses the first
PARADOX.DSQ file it finds.

If SQL Setup can’t find PARADOX.DSQ in any of these locations, it
uses the default server connection for each supported product. Once
you're through customizing a connection, you can save the file to any
directory you choose on your local hard disk or network drive.

Since Connection | Customize modifies the way Paradox users
connect to a database server, access to a public PARADOX.DSQ
should be reserved for authorized users only. Furthermore, because it
might contain open passwords, it’s advisable to password protect
PARADOX.DSQ. Check with your database administrator before
attempting to modify a public PARADOX.DSQ.

To customize your server connections, choose Connection | Customize
from the SQL Setup Main menu. (If the PARADOX.DSQ file is

Connection names,
descriptions, and
parameters

password protected, SQL Setup prompts you for a password.) SQL
Setup displays the SQL Connection screen.

For each connection, you can specify (or change)

0 The connection name for this connection. You can enter any text
(up to 28 characters) as a title for this connection. This title
appears with SQL Link messages and identifies replicas when you
scroll through a table list.

A3 The description for this connection. You can enter more specific
information about this connection (up to 80 characters).

You can modify the connection name and description to say
anything you want. This is the information that users see when
they select a server connection from the connection list. Each
connection name and description pair must be unique; you
cannot have identical combinations.

7 The parameters for the current connection. SQL Setup lists the
parameters that SQL Link supplies to the database server to
establish the connection, such as user name, password, and server
name (you may want to fill in only the server name for users and
ask them to supply their own user name and password). If all
parameters (including password) are filled in, users will not see
the parameters screen.

To edit connection data, use the keys listed in Table 7-3.

Table 7-3 Customize connection key operations

Key

Home

End

1
d

PgUp and PgDn
Ins

Del

F1 Help

F2 Do_lt!

F3 Move Up

_ Description

Moves to first connectmnwhen in the Title aféé; orto
first field when in the parameter area.

Moves to last connection when in the Title area, or to last
field when in the parameter area.

Moves to previous field or connection.

Moves to next field or connection.

Scrolls among connections.

Adds a new connection at the current cursor position.
Deletes the connection at the current cursor position.

Provides information about how to use options in the
Connection menu.

Validates your entries and saves any changes to
PARADOX.DSQ.

Moves between title and parameter areas.

Chapter 7, The SQL Setup program 127

Key Description

F4 Move Dn Moves between title and parameter areas.
F10 Menu Displays the Connections menu. -
Adding a new connection To add a new server connection, follow these steps:

1. Press Ins to insert a connection at the current cursor position. A
list of available SQL products appears in the center of the screen.
Choose the product (and dialect) on which you want to base the
connection.

Report Password Help DO-1T! Cancel =
== — = SQL Connections

Connection Name . Description

1BM 0S/2 DBM =n IBM 0S/2 Database
IBM 0S/2 DBM
~ MDI Database Gateway to DB2
I Microsoft, SYBASE i Microsoft, SYBASE SQL Server
- NetWare SQL
ORACLE
ORACLE VAX Rdb/VMS

- VAX Rdb/VMS Standard connection to VAX Rdb/VMS

I MDI Database Gateway to DB2 Standard connection to DB2 via MDI
P Database Gateway

Edit the Connection Name and Description, or use [Ins] to add a line
or [Del] to delete a line, then press [F4] for the Parameters screen.
== 1 0f b == —

iting Connection

2. A new connection appears in the connection list. Edit the
connection name and description as described in the previous
section. Each connection name and description pair must be
unique; you cannot have identical combinations.

L Cancel
SQL Connecti
. Description

Customer Data Database of customers, including order
and credit information <

. IBM 0S/2 DBM Standard connection to IBM 0S/2 Database
Manager

Microsoft, SYBASE SQL Server Standard connection to Microsoft and
SYBASE SQL Server

ORACLE Standard connection to ORACLE

VAX Rdb/VMS Standard connection to VAX Rdb/VMS

Edit the Connéctioﬁ Name and Description, or use [Ins] to add a line
or [Del] to delete a line, then press [F4] for the Parameters screen.

128 User’s Guide

Saving connection data

Note

3. Press F4 Move Dn to move to the SQL Connection Parameters
screen. Edit the connection parameters as described in the
previous section.

pO-I1T! Cancel

ort Password Help
- = SQL Connection Parameters

Re

Parameter Value
Remote user name jlee
Password trapper
Server mis server

Database customer

Enter values you want to set as defaults for this connection, then
press [F3] to save changes and return to the SQL Connection list.
4 o S G oo

When you press F2 Do_It! on the SQL Connection screen, SQL Setup
validates your entries, then asks you to decide where to save the
connection data in PARADOX.DSQ:

Re Cancel

SQL Connections -

ort Password Help

DO-1T!

Connection Name Description
Customer Data Database of customers, including order
and credit information

IBM 0S/2 DBM Standard connection to IBM 0S/2 Database
Man

ager
ave PARADOX.DSQ
Microsoft, SYBASE SQL Serv| HardDisk i Microsoft and
Network er

ORACLE ORACLE

VAX Rdb/VMS Standard connection to VAX Rdb/VMS

Edit the Connection Name and Description, or use [Ins] to add a line
or [Del] to delete a line, then press [F4] for the Parameters screen.
 — g ; R

-

0 Hard Disk: Saves PARADOX.DSQ in the directory where it was
found. If no previous version is found, PARADOX.DSQ is saved
in the Paradox system files directory.

g Network: Saves PARADOX.DSQ to a directory you specify on
your local hard disk or network drive. SQL Setup prompts you
for the complete path.

You cannot save an empty list.

Chapter 7, The SQL Setup program 129

Password protection for
system administrators

Important

130 User’s Guide

Once SQL Setup saves PARADOX.DSQ), you return to the SQL Setup
Main menu.

Since PARADOX.DSQ can contain passwords, you may want to
password protect it. There are two levels of password protection:

3 Admin level: This password should be known only by the system
administrator. Admin-level passwords are the same as owner
passwords in Paradox.

0 User level: All users share a user level, or auxilliary, password,
which they must provide to use the connections list.

For more information, see Chapter 17 of the Paradox User’s Guide.

If you password protect the connections list, any user who does not
have a password will not be able to connect to a server.

To password protect the connections list, follow these steps:
1. Choose Password | SetAdmin from the Customize Main menu.

2. Enter the password and choose OK. Paradox will ask you to
verify your entry by entering the password again.

Cancel

port i i
SQL LR —

Re

Password Help

DO-1T1

~ Connection Name pescription

Customer Data <« Database of customers, including order

e information
I} Admin Password: Qnection to IBM 0S/2 Database

to Microsoft and
to ORACLE

VAX RdbiEHEH ctjl to VAX Rdb/VMS

Edit the Connection Name and Description, or use [Ins] to add a line
or [Del] to delete a 1i

Enter password a second me to confirm.

If you want to add a user-level password, choose Password | SetUser
from the Customize Main menu. User passwords are similar to
auxiliary passwords in Paradox with the following exceptions:

0 You can have only one user-level password (which you can give
to all authorized users) for each PARADOX.DSQ.

0 User passwords grant the user read-only access to the list of
customized connections.

Password protection for
your personal
PARADOX.DS@

Customize connection
reports

Printing reports

If you have a personal PARADOX.DSQ that you want to password
protect, follow the instructions for setting up an admin-level
password as explained previously. Although you don’t need to define
any user passwords, you can do so if you want other users to have
access to your custom connections, but you don’t want to let them
change any connection information. You will need to enter your
admin-level password each you want to use your personal
PARADOX.DSQ.

To create a report on your session using Customize, choose Report
from the Customize Main menu.

Report P

assword Help

DO-1T! Cancel
== SQL Connection Parameters

Parameter Connection List Report

Remote user na [X] Make Report:
«) To Screen
Password () To Printer
() To File
Server

Database [1 Save Connection List As Table:

Fnter values you want to set as defaults for this connectiaon, then
press [F3] to save changes and return to the SQL Connection list.

The Connection List Report screen lets you create a report on the
current session. You can display the report onscreen, print it, write it
to a file, or create a Paradox table with the same data.

If you elect to create a report and send it to the screen, select the
Make Report option and click To Screen, then choose OK. You'll see
the “Working...” message, followed by a screen similar to this one:

Chapter 7, The SQL Setup program 131

Customized Connection Report

liconnection Name: Customer Data
iDescription : Database of customers, including order and credit

information
Parameter

Remote user name

Password

Server mis server
Database customer

Click the Close box or press Ctrl-F8 to close the Report window and
return to the summary screen.

To create a report and send it to the printer, select the Make Report
option, click To Printer, then choose OK.

To create a report and write it to a file, select the Make Report option
and click To File, type the file name, and choose OK. (If a report with
the same name already exists, you'll be asked whether you want to
replace the existing file.)

Saving a connection list as To save the new connection list to a table, select the Save Connection

a table List As Table option. Then type the table’s name and choose OK. (If a
table with the same name already exists, you will be asked whether
you want to replace the existing table.) To view this table, exit
Customize to the Paradox Main menu, choose View, and select the
new table.

MakeReplicas

When you choose MakeReplicas, SQL Setup leads you through the
steps of creating replicas. SQL Setup begins by displaying the Table
Selection screen, which lets you select the criteria SQL Setup will use
to retrieve tables from your database server. The Table Selection
screen varies slightly for each server, but resembles the one shown in
the following figure:

132 User’s Guide

Searching for User and

System tables

Note

Connection u;ka&a»li;a; Help

Exit o
Table Selection

rch For These Tables -

) A1l User Tables

) A1l User and System Tables :
Only These User or System Tables: .

Connection is t to: ORACLE

You can search for all user tables, all user and system tables, or
specified tables. If you choose the All User and System Tables button,
SQL Setup looks for all system tables, in addition to the user tables
located on your server. For example, you might want to create
replicas of system tables to use QBE to query catalog data on your
database server.

You can also constrain the search by specifying the tables” owner or
creator (if applicable for your database server), or enter characters
common to the table names you want to select.

If you specify the names of tables and their owners using Only These
User or System Tables option, you can use the wildcard characters ..
to match any number of characters or @ to match a single character in
the tables’ names. For example, "C.." selects all tables starting with C,
such as Customer, Customs, and so on, while "C@PS" only selects the
tables Caps, Cops, and Cups.

On case-sensitive servers, the wildcard operators @ and .. always
produce a case-insensitive search pattern.

Chapter 7, The SQL Setup program 133

Selecting tables to
replicate

134 User’s Guide

Connection MakeReplicas Help Exit
Table Selection

Connection: ORACLE

Search For These Tables

() A1l User Tables

() A1l User and System Tables

(e) Only These User or System Tables:

Where Owner Name is IEIRYINEEEEEEG_—_—_—_

and Table Name is ITTRNIEG—

You can use .. tu,match,iny number of characters,
or @ to match any single character.

Editing Connection List.

Once you determine which tables to search for, choose OK.
MakeReplicas displays a status screen with a flashing check mark (v)
opposite the current step.

Connection MakeReplicas Help Exit

SQL Setup ==== 7

Getting the list of remote tables ‘
Evaluating remote indexes ‘
Assigning Paradox data types to replicas |
Preparing to create replicas I
Replicating the remote tables i
i

i

Running SQL command on server...

SQL Setup will look in your server’s system tables (or catalog) to
obtain a list of tables that match the criteria you specified on the
Table Selection screen.

When SQL Setup has found all accessible tables that match the
criteria you defined, it displays the following screen from which you
choose the tables it should replicate.

Converting numeric
fields to currency fields

Note

Connection MakeReplicas Help Exit

s - . == Select Tables

~ Select tables to replicate using Ins, Del, or the mouse.
s Jables To Replicate == 2 tables====

JLEE.SAMPORDS i
JLEE.STOCK m |

3 tables

Remote Tables Found

' JLEE.SALES
JLEE.SAMPORDS
JLEE.STOCK

Use your mouse or arrow keys to select remote tables in the Remote
Tables Found list box, then either double-click on the table name, or
press Ins or Spacebar while the table name is selected to copy the table
name into the Tables To Replicate list box. To remove a table from the
Tables To Replicate list, you can double-click on a table name or press
Del or Spacebar while the table name is selected.

To copy all tables listed in the Remote Tables Found list box to the
Tables To Replicate list box, click the All button. To clear the contents
of the Tables To Replicate list box, click the None button. If you want
to replicate almost all of the tables in the Remote Tables Found list
box, click the All button, then remove the tables you don’t want to
replicate from the Tables To Replicate list.

If any of the tables you selected in the Select Tables screen contain
numeric fields, SQL Setup lets you determine on a
column-by-column basis whether these field types should be
interpreted as currency fields when viewed in Paradox. Even if your
database server doesn’t support currency field types (sometimes
called MONEY fields), you can display numeric (N) fields as
currency ($) fields in Paradox.

This conversion option appears only when you are replicating data
from servers that don’t support a currency field type. Otherwise, SQL
Setup automatically maps your server’s currency field type to a
currency ($) field in Paradox.

Chapter 7, The SQL Setup program 135

Naming replicas

136 User’s Guide

Name ame & _Table Name . Field Name & Type
il SAMPORDS CUSTID o .SAMPOR CUSTID NUMBER(38) .

-~ SAMPORDS STOCK# ‘ .SAMPOR STOCK# NUMBER(38)
SAMPORDS QUANT . SAMPOR QUANT - NUMBER(38)

,:' SAMPORDS EMP# . . SAMPOR EMP# t NUMBER(38)

STOCK UNIT PRICE « .STOCK UNIT PRICE NUMBER(38)

[F1] Help o [space] Numeric Fie]d"T'iigg]e’
DO-IT! [1] Menu)

—

“Trom numeric to currency.

Toggle between numeric and currency field types by pressing
Spacebar, by selecting the menu choice, or by double-clicking on Field

Type.

When you're finished specifying the fields to convert to currency,
press 2 Do_lt! to save, or press F10 Menu and choose Cancel to
abandon your changes.

SQL Setup automatically verifies that the new replica names do not
conflict with the names of

0 any existing local tables

O any existing replicas that use the same connection and has an
associated form or report

O any existing replicas that use a different connection
O any other tables in the list of tables to replicate

If a conflict arises, SQL Setup renames the conflicting table using
tablename-n, where 1 is a number. For example, if your remote table is
called Customer and SQL Setup detected a conflict with a local
Paradox table with the same name, your replica would automatically
be renamed Custorn-0. This protects you from accidentally
overwriting existing tables.

If SQL Setup resolves any table name ambiguities, it writes a list of
all replicas it renamed to a table called SQLprobs. SQL Setup then
displays the contents of SQLprobs to inform you of its actions. When
you finish viewing this table, press any key or click the mouse.

You can rename, delete, or copy replicas created by SQL Setup using
Tools | SQL | ReplicaTools. See Chapter 5 of this manual for details.

SQL Setup reports

Sending a report to the
screen

Once SQL Setup has created replicas for the remote tables, it displays
a status message similar to the following:

_Connection licas Help Exit

MakeRep

etup

3 replicas created successfully.

T GO

To create a report on your session using SQL Setup, click the Details
button shown in the previous figure.

Connection MakeReplicas Help Exit

———— SQL Setup Details =
Show Replica List Details:
[X] Make Report:
(¢) To Screen

() To Printer
() To File

The SQL Setup Details screen lets you create a report on the current
session. You can display the report onscreen, print it, write it to a file,
or create a Paradox table with the same data.

If you elect to create a report and send it to the screen, select the
Make Report option and click To Screen, then choose OK. You'll see
the “Working...” message, followed by a screen similar to this one:

Chapter 7, The SQL Setup program 137

Sending a report to the

printer

Sending a report to a file

Saving a replica list as a

table

138

User’s Guide

Dictionary Report

ORACLE

Table: SALES SQL Table Name: JLEE.SALES

Field Name Type SQL Field Name SQL Field Type

1 SALES A5 SALES CHAR(5)
ﬁTab)e: SAMPORDS SQL Table Name: JLEE.SAMPORDS
Field Name Type SQL Field Name SQL Field Type
| 1 ORDER# N* ORDER# NUMBER (38)

2 CUSTID N CUSTID NUMBER (38)

3 STOCK# N STOCK# NUMBER (38)

N QUANT NUMBER (38)

4 QUANT

Click the Close box or press Ctrl-F8 to close the Report window and
return to the summary screen. You can choose Details again to
redisplay the report, or to print it.

To create a report and send it to the printer, select the Make Report
option, click To Printer, then choose OK.

To create a report and write it to a file, select the Make Report option
and click To File, type the file name, and choose OK. (If a report with
the same name already exists, you'll be asked whether you want to
replace the existing file.)

To save the new replica list to a table, select the Save Replica List as
Table option. Then, type the table’s name and choose OK. (If a table
with the same name already exists, you will be asked whether you
want to replace the existing table.) To view this table, exit SQL Setup
to the Paradox Main menu, choose View, and select the new table.
The result resembles the following figure:

1 1 A 5

2 SAMPORDS | 1 N NUMBER (38)
3 SAMPORDS | 2 | CUSTID N CUSTID NUMBER (38)
4 SAMPORDS | 3 | STOCK# N | STOCK# NUMBER (38)
5 SAMPORDS | 4 | QUANT © N QUANT NUMBER (38)
6 SAMPORDS |« 5 ORDDATE | D | ORDDATE DATE

7 SAMPORDS | 6 = EMP# N | EMP# NUMBER(38)
8 . STOCK 1 ITEM | A5 ITEM CHAR(5)

9 | STOCK 2 | DESCRIPTION | A2 DESCRIPTION CHAR(25)

10 STOCK 3 IN STOCK s IN STOCK NUMBER (5)
11 s70CK 4 | UNIT PRICE N UNIT PRICE NUMBER(38)

Exit

When you choose Exit| Yes from the SQL Setup Main menu, you
leave SQL Setup and return to the Paradox Main menu.

Chapter 7, The SQL Setup program 139

140 User's Guide

CHAPTER 8

The sample application

This chapter describes a few development scenarios and then
presents the SQL sample application, a simple application that
illustrates the use of SQL programming techniques in PAL.

PAL applications and the SQL environment

You can develop new PAL applications that use data from local
tables, from remote tables, or from any combination of the two.
Following are the basic steps in developing SQL Link PAL
applications:

1. Run SQL Setup to access existing remote tables and customize
your server connection (if necessary).

. Load your application.
. Select the server connection.

. Run remote operations.

ga s W N

. Commit or roll back your changes to end the transaction (if your
application is transaction-based).

6. When finished, disconnect from the server.

Common approaches to building SQL Link applications

Following are a few different approaches you can take when
designing and writing SQL Link applications. The first two scenarios
use an airline ticketing application as an example, although many
applications use the same transaction-processing techniques and
concepts outlined here. The basic goal of these approaches is to lock
records for the shortest time possible, while ensuring data integrity.

Chapter 8, The sample application 141

Sumple upprouch A This example and the next one are based on a customer trying to
book a seat on a flight. The first approach sets AutoCommit to No at
the last possible moment to achieve the highest level of concurrency.
The drawback to this approach is that a plane seat could sell while
the customer is making a decision.

1. The customer calls a reservations agent and asks which flights are
available on a specific route.

2. The application turns AutoCommit on and queries for available
flights (using Ask on a replica and filling in the query form).

3. The customer picks a flight.

4. The application turns AutoCommit off, and queries for the
specific flight, placing a lock on the flight. If the seat is still
available, the application performs a CHANGETO query to
reserve the seat and then uses SQLCOMMIT to save the changes
and release the locks.

5. The application turns AutoCommit on again.

Sample approuch B The second approach is similar except it sets AutoCommit to No at
the first customer query. The drawback to this example is that all
users pay for the increased control of one user and you don't
maintain the highest level of concurrency. The advantage is that a
seat cannot sell while the customer is deciding if they want it or not.

1. The customer calls a reservations agent and asks which flights are
available on a specific route.

2. The application turns AutoCommit off and queries for available
flights. This locks all of the flights returned by the query.

3. The customer picks a flight.

4. The application performs a CHANGETO query to reserve the seat
and then uses SQLCOMMIT to save the changes and release the
locks.

5. The application turns AutoCommit on again.

The SQL sample application

The SQL sample application is based on the “read-before-write”
approach, which combines the best features of sample approach A
and sample approach B. The read-before-write approach differs from
sample approach A because it compares the existing data to the new
data before making any changes; it differs from sample approach B

142 User’s Guide

because it sets AutoCommit to No at the last moment instead of
locking earlier. The SQL sample application is based on a database of
customer information and a related database of orders placed by
those customers.

1. A customer calls to say that they have moved and would like to
update their mailing address.

2. The application then turns AutoCommit on and queries for that
customer’s data. It then uses COPYTOARRAY to save the record
from Answer until later.

3. The application uses Tools | Copy | JustFamily to copy all of the
family members from the replica to the Answer table.

4. The application then uses PICKFORM to change to the correct
form, goes to Edit mode (not CoEdit because Answer is private),
sets IMAGERIGHTS UPDATE to preserve the key, and uses a
WAIT RECORD to allow editing. It then uses COPYTOARRAY to
save the user’s changes in an array.

5. When the user is finished editing, the application turns
AutoCommit off and reissues the original query. This locks the
record. The application then compares Answer with the original
version from step 2. If they are the same, the application uses a
CHANGETO query to update the table with the user’s changes,
commits, and turns AutoCommit back on. If they are different,
someone else has changed the data and the application alerts the
user.

This approach is based on a business rule that assumes it’s rare that
the same customer record will be modified by two different people at
the same time. It uses the approach of verifying that the record hasn’t
been changed by another user before making any changes, rather
than locking the record when it is accessed. If the record has been
changed, the application tells the user that the record has changed
and lets them refresh the editing screen. This approach provides high
concurrency and less chance for deadlocks because locks are held for
the shortest time possible.

The SQL sample application shows practical techniques and
approaches for writing a PAL SQL application, including how to

A combine PAL and SQL commands to access remote data in a
simple but powerful way

O take advantage of the transaction processing features available in
the SQL environment

0 display multi-table views (one-to-many relationships)

Chapter 8, The sample application 143

144 User’s Guide

0 use Paradox’s cross-tabulation, graphing, and reporting features
on remote data

employ Table Browse techniques to edit records in remote tables

respond to errors on the remote server using PAL’s error-handling
features

The SQL sample application is a multi-user PAL application that
accesses customer and order information stored on your database
server using SQL commands and functions.

The SQL sample application consists of these scripts:

Instlsgl

Make
Startsql
View
Modify

Orders

Reports
Menus

Utils
Sqlerror

Installs the SQL sample application by copying the
proper tables to the server and creating the
corresponding replicas. If the user has not established a
server connection, brings up the server connection screen.

Plays each script to create the sample application library.
Starts the SQL sample application.
Lets the user view remote customer records.

Lets the user add, delete, or edit user information in the
remote Customer table.

Lets the user add, delete, or edit order information in the
remote Orders table.

Creates reports for the SQL sample application.

Contains procedures for enabling and disabling menu
items depending on the current application context.

Utility procedures for the application.
Provides error handling for the application.

You can print out each of these scripts with Scripts | Editor | Edit
<Scriptname>, F10, Print. In addition, the Sample Application Disk
contains various objects (primary indexes, forms, validation tables,
reports, and graphs) that are part of the SQL sample application. The
SQL sample application uses the following tables:

Customers Table created on server using data from the
source Custdata table.

Order Table created on server using data from the
source Orddata table.

Stock Lookup table created on server using data from
the source Stkdata table.

Teust, Tord Local utility tables used for forms and reports.

Privcust, Privord Created on application startup in the private
directory.

Installation

Note

You need to install the SQL sample application before you begin
using it. Use the installation program that comes with SQL Link to
install the sample application in a directory on a local or network
hard disk. If you haven’t already done this, refer to your
server-specific addendum for instructions.

Next, start Paradox SQL Link and run the installation script called
Instlsql to set up the SQL sample application environment. The Instlsql
script creates the library for the sample application (SQLAPP.LIB) and
creates the sample Customer, Orders, and Stock tables on your database
server. You only need to run the Instlsgl script the first time you run
the sample application.

If a Customer, Orders, or Stock table already exists in your local
Paradox environment, you will need to delete or temporarily rename
the table before installing the sample application. If any of these
tables exist on your remote server, do not drop them. To make your
own copy of the sample application, create a sample database or user
on your server and install the application there.

To run Instlsql,
1. Choose Tools | More | Directory from the Main menu.

2. Type the drive and path of the sample application directory, then
press Enter. For example, if it resides in the
C:\PDOX40\SQLSAMP directory, type

c:\pdox40\sqlsamp

and press Enter.
3. When Paradox asks you to confirm your choice, choose OK.
4. Choose Scripts | Play from the Main menu.

5. For the script name, type instlsql and press Enter.

Chapter 8, The sample application 145

6. The installation script asks you to select the server connection (if a
current server connection isn’t active) to use for the SQL sample
application. Move the cursor to the server connection you want
and press F2 Do_It!, or press ESC to quit.

7. If you need to supply additional information for this server
connection (such as user name or password), type in this
information and press F2 Do_It! to continue.

If the information you specify is not correct, you return to the list
of server connections. Repeat step 6.

The installation script creates the SQLAPP.LIB file and copies the
Custdata, Orddata, and Stkdata tables to the database server, renaming
these tables Customer, Orders, and Stock. When it copies these tables,
Paradox SQL Link creates replicas (named Customer, Orders, and
Stock) in the sample application directory.

Starting the sample application

146 User's Guide

The Startsql script starts the SQL sample application. It prompts you
to select a server connection (if a current server connection isn’t
active) and calls the Main menu. Startsql is the only executable script
in the sample application.

To start the SQL sample application,ParadoxSQL Link;sample
application

1. Choose Tools | More | Directory from the Main menu.

2. Type the drive and path of the sample application directory, then
press Enter. For example, if it resides in the
CAPDOX40\SQLSAMP directory, type

c:\pdox40\sqlsamp

and press Enter.
3. When Paradox asks you to confirm your choice, choose OK.
4. Choose Scripts | Play from the Main menu.

5. For the script name, type startsql and press Enter. The sample
application uses the Paradox PRIVTABLES command to ensure
that each user has their own local copy of Teust and Tord. These
tables contain the forms used by the application.

6. If you have not selected a server connection, the script prompts
you to select the server connection you want to use for the SQL
sample application. Move the cursor to the server connection you
want to establish and press £2 Do_It!.

7. If you need to supply additional information for this server
connection (such as user name or password), type in this
information and press F2 Do_It! to continue.

If the information you specify is not correct, you return to the list
of server connections. Repeat step 6.

Startup note A private directory must be specified for your copy of Paradox before
you attempt to use the sample application. The directory you
designate cannot be the directory in which the sample application
resides. You can use Tools | Net | SetPrivate to set or change a private
directory during a single Paradox session. You can use the Custom
Configuration Program to set a default private directory. For more
information on designating private directories, see Chapter 17 of the
Paradox User’s Guide.

Multiuser access To allow other users (other than the owner /creator of the sample
application tables) to run the SQL sample application, you need to
grant privileges on the Customer, Orders, and Stock tables created
during installation. The privileges you need to grant are listed in the
following table:

Table Granted privileges -)
Customers SELECT, UPDATE, INSERT, DELETE

Orders SELECT, UPDATE, INSERT, DELETE

Stock SELECT

Note If you're unfamiliar with granting privileges, refer to your server
documentation.

Once the installation is complete, the SQL sample application Main
menu appears on the screen.

The Startsql script shows how the SQLCONNECTINFO function
determines whether the user has selected a server connection and, if
not, uses the SQLSELECTCONNECT command to present the user
with a list of available server connections to choose from. The
connection the user selects becomes the active connection for the SQL
sample application.

Chapter 8, The sample application 147

The Main menu The SQL sample application Main menu consists of four menu
selections:

0 System menu (=) features a Connections submenu (with options
for selecting a server) and an About command, which tells you
about the SQL sample application.

3 Table menu features selections for viewing and editing customer
data.

0 Report menu features selections for printing reports. Users can
request reports on all records or West Coast records only. Other
selections allow the user to view a graph of orders summarized
by state, view a crosstab report of orders by product by state, and
change the discount percentage applied to customer orders.

0 Exit menu allows the user to close the SQL sample application by
selecting Exit | Yes. The user can select Exit|No to resume work in
the SQL sample application.

A doser look at the scripts used by the SQL sample application

The following section provides some details and code examples from
the SQL sample application. These examples illustrate how to view
and update server data and how to query and create reports from
server data. PAL programmers can also examine the complete script
files (found in the sample application directory) for more details.

Error hundling Throughout the SQL sample application, errors trigger a PAL
error-handling routine. Whenever an error occurs, a dialog box
appears, which displays the local or server error. The Sqlerror script
sets the global variable ErrorFlag to True and creates error message
strings using Paradox SQL Link’s error-handling functions
(SQLERRORCODE() and SQLERRORMESSAGE()) and the Paradox
error-handling functions (ERRORCODE(), and ERRORMESSAGE()).
If ErrorFlag is True, the script rolls back the current transaction and
displays the appropriate error messages.

Viewing customer Choose Table | View to view individual customer information records.

information The Viewcust script employs a dialog box where the user can enter a
customer number. If the user enters a valid customer number, the
corresponding information appears in a form (as in the following
illustration). The user can open another customer selection dialog box
with the Ctr/-Z key combination, or they can press any other key or
click a mouse button to close the form.

148 User’s Guide

Adding, deleting, and
editing customer
information

Enter Customer Number: UL “
(1000-1049)

F1 Help

The Viewcust script consists of these procedures:

3 getCustNoBox prompts the user to input a customer number. The
range of valid customer numbers is displayed in the dialog box.
The user can press OK to use the customer number or Cancel to
return to the main menu.

T selectCust runs a SQL NOFETCH query on the server, then uses
SQLFETCH to transfer the customer information to an array. (Sets
the cursor on the server to the position specified by customer
number.)

3 viewCust displays the selected information in a form, if the
customer record is found on the server.

Choose Table | Modify to add, delete, or edit customer records. The
Modify script uses a local table view of the server data. The user can
perform all modifications on the local data table, and changes are
reflected on the server.

The script creates a local table for each user that accommodates one
screenful (or page) of information. The FillPage procedure fetches
records from the current cursor position on the server into the local
table until the page is full or the last record on the server is reached.

The insertCust procedure handles the addition of new customer
records to the server and checks for key violations. The procedure
uses passthrough SQL statements to add the customer to the server.
This technique is illustrated in the following code fragment:
SaL

INSERT INTO ~FullCustomerName~ (Customer_No, Last Name,First Name, Address,
City,State, Zip Code,Telephone, Discount)

VALUES (~SQLVAL([Customer Nol)~, ~SQLVAL([Last Name])~,

~SQLVAL([First Name])~, ~SQLVAL([Address])~,
~SQLVAL([City])~, ~SQLVAL([State])~,~SQLVAL([ZIP_CODE])~,

Chapter 8, The sample application 149

150 User’s Guide

Note

~SQLVAL([Telephonel)~,
~SQLVAL(TIF(ISBLANK([Discount]),0,[Discount]))~)
ENDSQL

SQLVALY) is used to ensure that data types are handled correctly and
proper values are placed in a SQL statement.

The delCust procedure requests confirmation from the user before
deleting and verifies that the selected record has not been changed by
another user. The delCust procedure calls the readBeforeWrite
procedure to check the record.

The readBeforeWrite procedure is also called by changeCust, the record
editing procedure. readBeforeWrite allows for maximum concurrency

by locking the record at the last possible moment. The code for this

procedure follows:

; Procedure: readBeforeWrite

; Description:

; Performs a read before write validation of data.

; Pass the procedure:

; SQLTb1 - Server table to query (case-sensitive)

H SQLLocateVal - String containing Search Parameters

; beforeRec - An array containing values of the record we want
H to compare.

PROC readBeforeWrite(SQLTb1, SQLLocateVal, beforeRec)
PRIVATE editFlag

editFlag = (SYSMODE() = "CoEdit") ; test whether we’re in Cokdit mode.
; If we are, set a flag

IF (editFlag) and get us out of CoEdit.

THEN DO It!

ENDIF

SQLCOMMIT ; issue a COMMIT to ensure that

we get current version of records

set autocommit to YES

SQLAUTOCOMMIT YES

SQLRELEASE release any query that may be pending
IF NOT (RunFetch(Sq1Tb1l,"*",SQLLocateVal,"")) ; get current remote image
THEN ; error occurred ?
errorFlag=FALSE
SQLRELEASE ;. release the cursor on remote table

IF (editFlag)
THEN COEDITKEY

ENDIF
RETURN -1
ENDIF
SQLFETCH SQLRec ; fetch original record to an array
IF NOT Retval Then . unable to fetch record, or record deleted

msgInfo("Problem”,"Unable to fetch original record. "+
"It may have been deleted by another user.™)

SQLRELEASE . release the cursor on remote table
IF (editFlag)
THEN COEDITKEY ; return to Cokdit mode
ENDIF
RETURN -1
ENDIF

Closing the customer
table

Entering orders

SQLRELEASE ; release the cursor on remote table

FOR i FROM 2 TO ARRAYSIZE(beforeRec) ; compare "before" record to
; "after” record
IF (beforeRec[i] <> SQLRec[i]) ; "before” record and "after" record
are different
THEN
IF (editFlag)
THEN COEDITKEY
ENDIF
RETURN 0
ENDIF
ENDFOR

IF (editFlag)
THEN COEDITKEY

ENDIF

RETURN 1

ENDPROC
WRITELIB "SQLApp" readBeforeWrite
RELEASE PROCS readBeforeWrite

The Modify script contains the following procedures:

o

modifyCust is the main procedure for modifying customer records
on the server through a local table view.

fillPage fetches data from the server to fill the current page of the
form.

dispatchEvent handles and processes WAIT events.
mapQuery performs a QBE update query using CHANGETO.

readBeforeWrite provides a high-concurrency locking technique to
ensure data integrity on the server.

changeCust tests each record using the read-before-write
procedure. If the records have not been changed by another user,
it commits the changes.

insertCust adds new customers to the Customer server table and
checks for key (unique index) violations.

delCust deletes customers from the Customer server table and
executes a read-before-write procedure to verify integrity before
committing changes.

Choose Table | Close to close the customer information table on the
local desktop. The closing procedure verifies that all your changes
have been committed.

Choose Table | Orders to add or update customer order information.
The compareRecs procedure in the Orders script handles each change
to the order information as a single transaction (using

Chapter 8, The sample application 151

Printing records

Printing the West
Coast records

Graphing orders

152 User’s Guide

SQLAUTOCOMMIT, SQLSTARTTRANS, SQLCOMMIT, and
SQLROLLBACK) to ensure data integrity.

The Orders script uses a remote lookup table procedure, itemSQLPick,
to display a list of products, letting the user quickly and accurately
pick an item to enter on an order form. (The item lookup appears
when a user presses F1 with the cursor in the Item field.) The script
also checks that the user entered a value in the Quantity Ordered
field, calculates the extended price, and checks for invalid
information in the Product Code field.

The Orders script contains the following procedures:
O ordEntry enters new orders and reviews existing records.
O processWaitEvents handles and processes WAIT events.

O fetchOrders queries the remote Orders table for all orders for the
current customer. The answers are saved in separate records
(“before” and “after” snapshots) to be used later in a comparison.

O postOrderChanges commits order changes if the “before” and
“after” records compare OK.

O cleanUp deletes temporary comparison tables and returns the user
to the Customer table view.

O compareRecs compares records item-by-item to verify that no other
user has changed the order records. If any two items in a record
do not compare, compareRecs rolls back the changes.

O resetOrd restores the local table after a rollback or comparison
failure.

O calculateOrderTotal adds the line items together to generate an
invoice total.

0 itemSQLPick displays a list of stock items for the user’s selection.

Choose Report | All to print all records to the screen. The procedure
printAllRecords in the Reports script can be changed to print reports to
the printer.

Choose Report | West Coast to print all records to the screen. The
procedure printAllRecords in the Reports script can be modified to
print reports based on other criteria.

Choose Report | Order Summary to display a graph of average orders
by state. The procedure doOrderGraph in the Reports script can be
modified to display different graphs.

Creating a crosstab
report

Changing the discount
percentage

Choose Report | Order by Product to create a crosstab report of orders
by state by product. The procedure doOrderByProduct in the Reports
script can be modified to display other crosstab reports.

Choose Report | Change Discount % to globally change the customer
discount percentage. The procedure setCustDiscPct in the Reports
script can be changed to allow percentage changes of more than or
less than ten percent.

PAL and SOL commands

For more information about the PAL commands and functions used
in the SQL sample application, see Chapter 6. For more information
about SQL commands in the SQL dialect of your particular database
server, see your database server manuals.

Chapter 8, The sample application 153

154 User’s Guide

Access privileges

Back end

Client

Client-server architecture

Commit

Concurrency

Connection

Glossary

Determines the degree to which you can read or modify information
on the server; usually assigned by the database administrator.
General access levels include rights to select, insert, update, create,
and delete.

Relative to Paradox, a database server and its associated concurrency
and data integrity control.

In client-server architecture, the client software (residing on user
workstations) sends requests from the workstation to the server for
processing and displays the results of those requests back to the
workstation.

In this environment, database management tasks are divided between
the client, or “front end” software, which resides on user
workstations, and the server or “back end” software, which resides
on a dedicated database server or file server. Data is accessed on the
client, then it is processed, stored, and managed on the server.

In transaction processing, you or the application commits a
transaction to save changes made to data on the database server. See
also Rollback, Transaction, Transaction processing.

The attribute of relational databases that allows all users to work
with consistent data. Until you issue an implicit or explicit COMMIT
or ROLLBACK statement, data required for your transaction will not
be altered by any other user. See also Commit, Rollback, Transaction,
Transaction processing.

Information that Paradox uses to connect to a server (for example,

user name, password, database name, server name, and so on). See
also Replica connection.

Glossary, 155

156

Connection parameters

Data integrity
Database

Database administrator

Database server

Deadlock

Dialect

Dictionary

Field

File server

Front end

Index

Key field

Local

User’s Guide

Variables such as user name, server name, and so on,
that your server requires for access. See your server-specific
addendum for more information on connection parameters.

The accuracy and reliability of data.
A collection of tables organized to serve a specific purpose.

The person responsible for managing SQL databases, including user
access rights to data. Also known as the system administrator.

SQL database servers directly manage the database, including such
tasks as processing requests, storing data, managing concurrent data
access, and providing data security and integrity. See also Client.

When two or more users hold locks on data required by each other’s
SQL transactions, a deadlock has occurred. Database servers detect
deadlocks and, in most cases, cancel one of the participating user’s
queries.

A product-specific implementation of the standard Structured Query
Language (SQL). The exact syntax of SQL statements might vary
among database server products. See also Structured Query Language.

A local Paradox table that contains the structural information of the
remote tables found on the database server. SQL Setup uses the
dictionary to create replicas. See also Replica, SQL Setup Program.

A category of information (column) in a table; a collection of related
fields makes up one record (row) in a table. See also Record, Table.

Stores programs and data shared by multiple users on a local area
network (LAN) and allows users to share peripherals.

In Paradox SQL Link, the interface used to create and issue queries
against a database server.

A file that sorts records in a table to speed up searches for
information and, in some cases, to ensure that the table doesn’t
contain duplicate or blank records. See also Key field.

One or more fields in a table used to build an index. See also Index.
An operation that occurs at the client workstation, or a Paradox file

stored on a floppy disk, workstation hard disk, or a LAN file server.
See also Remote.

Local area network

Lock

Multiuser

NULL
Object
QBE
Query

Query by example (QBE)

Record

Relational database
management system

Remote

Replica

Replica connection

Rollback

Server

A system that links PCs and lets them share data and peripherals. See
also File server.

To preserve the consistency of each user’s view of a database’s data,
relational databases must lock data once it has been accessed. Locked
data cannot be changed by other users until it is implicitly or
explicitly unlocked by the user (or, in the case of a deadlock
condition, by the database server itself). See also Concurrency.

A system that lets more than one user access the same data at the
same time.

A SQL field value that means “value unknown.”

A component of a database such as a column, table, or index.
See Query by example.

A specific request for data.

A request for data formulated by providing an example of the answer
you are looking for.

A group of fields in a table that contain related information; a row in
a table. See also Field, Table.

Often abbreviated RDBMS, a database system based on the
mathematical theory of sets in which information is organized into
tables, or relations.

An operation that occurs on the database server, or a file that resides
on the SQL database server. See also Local.

Alocal file that tells Paradox where to locate a remote table and how
to work with the data in it. A replica contains structural information

about the remote table and information that Paradox uses to connect
to the database server.

A server connection based on the connection data found in the replica
of a remote table. See also Connection.

The ability to remove an unsuccessful transaction after an error. See
also Commit, Transaction, Transaction processing.

See Database server and File server.

Glossary, 157

SaL

SQL Setup Program

Structured Query Language

158

(saL)

System administrator

Table

Transaction

Transaction processing

UseSQL

Workstation

User’s Guide

See Structured Query Language.

A SQL Link program that lets you create replicas for existing remote
tables and add custom server connections.

SQL has been adopted by the American National Standards Institute
(ANSI) as the standard language for relational database management
systems (RDBMS). SQL includes programming commands for data
definition, data manipulation, data retrieval, security, and transaction
processing. See also Dialect.

See Database administrator.

A structure of rows (records) and columns (fields) that contains
information. See also Field, Record.

A process or logical unit of work comprised of one or more database
operations. See also Commit, Rollback, Transaction processing.

A method of processing database information that increases data
integrity and improves performance. At the conclusion of a
transaction, you determine whether each operation in the transaction
completed successfully, then either commit (save) or roll back
(abandon) changes made to the data. See also Commit, Rollback,
Transaction.

The SQL command editor that lets you compose SQL statements and
send them directly to your database server. This program can be run
anywhere in Paradox (with the UseSQL script) and specifically in the
SQL Setup Program (with the UseSQL command).

For Paradox’s purposes, a DOS client to a database server, which
issues SQL queries against that database.

~ (tildes)
in passthrough SQL statements, 93
in query statements, 91

A

access privileges, 11, 15
problems with, 19
Accessing existing data, 13
Add command, 28, 67-69, 79
adding a new connection, 128
alphanumeric strings, 93
blank, 104
empty, 102
null, 95
See also ~(tildes) in passthrough SQL
statements
Answer table, 26, 44
applications, sample, 141
arrays, 95, 105
Ask command, 13, 26, 43
AutoCommit command, 30, 65-66
See also SQLAUTOCOMMIT

blank strings, 104

blank values (fields), 118

Borland technical support, 5
Borrow command, 28

breaking a connection, 18, 59, 66, 69

C

case-sensitive servers, 46
Changed table, 19, 68
changes to connection, defined, 15
CHANGETO query, 19
Clear command, 60
client-server architecture, 9
command editor, 33-41

card stack analogy, 33

function keys, 33

INDEX

See also UseSQL
commands
menu, 43-70
PAL, 76-117
comments, PAL applications, 93
COMMIT command, 31, 61
defined, 11
communications, remote, 14
data processing and, 18
suspending, 99
See also breaking a connection
compatibility, database servers, 16
connecting to database servers, 22, 127-130
Connection
customizing, 126-132
SQL Setup menu option, 124
Connection command, 57
connection data, 122
Connection menu, 57
connection parameters, 15, 98
SQL Setup Program and, 127
converting PAL expressions to SQL
See ~ (tildes) in passthrough SQL statements
Copy command, 54, 62, 63, 80
and pending transactions, 55
as an atomic operation, 56
Create command, 24, 49, 82
Custdata table, 145
custom connection example, 15
custom forms, 52
custom reports, 29, 91
Customer service
hours of operation, 7
Customer table, 146
customizing a connection, 126132

D

data entry form, 52, 53
data integrity, 11, 112
data, accessing, 12-20
PAL applications and, 141
problems with, 19
database administrator, 11

Index 159

databases, relational model, 10
DataEntry command, 26, 51
date fields, 47
deadlock, detection and recovery, 19
Delete command, 56, 62, 63, 83
and pending transactions, 56
compared to the Empty command, 56, 70
DELETE query, 19
Deleted table, 19
directories
copying tables to different, 63
current working, SQL Setup and, 122
disabling SQL Link, 22, 60
disconnecting server connections, 59, 98

E

editing SQL statements, 37
Empty command, 31, 69, 84
compared to the Delete command, 70
empty strings, 102
Entry table, 25
error codes, 19
remote, 73, 88
returning, 85, 103
error messages, 19
remote, 73, 88
returning, 88, 104
error procedures
remote errors, 74
sample application, 144, 148
transaction processing, 100
error-handling procedures, scripts, 87
ERRORCODE() function, 73, 85, 86, 148
ERRORINFO command, 87
ERRORMESSAGE() function, 73, 88, 148
errors, 19, 73
run-time, 85, 88, 94, 103, 104
SQL statements, 41
example elements, 91
expressions
converting to alphanumeric strings, 93
converting to SQL strings, 117

F

FAST keyword, 19
features
new and improved, 2
overview of, 1-2
field types, 50
server compatibility, 16

160 User's Guide

translating to SQL expressions, 117
fields, 10
array of values, 95
creating tables from list of, 82
indirectly supported types, 16
naming conventions, 24, 50, 122
null vs. non-null, 12
query operators and, 47
unsupported types, 16, 50, 51
File menu, UseSQL and, 35
files, 62
PARADOX.DSQ, 126, 129
SQLAPPLIB, 145
Form Toggle (F7), 52
Forms command, 53
forms, data entry, 52, 53
function keys
SQL Setup, 123

images, 50

removing from workspace, 27
implicit locks, 19
indexes, 10

maintaining, 50

primary remote, 51

updating, 67
INSERT query, 19
Inserted table, 19
installation, sample application, 145
Instlsql script, running, 145
international date format, 22
interrupt key (Ctrl-Break), 18, 67
interrupts, 96, 108

setting, 67, 115
invalid table names, 49
ISSQL() function, 88

K

key fields, 10, 82

keyed tables, 68

keys
Clear Image (F8), 27
Form Toggle (F7), 52
interrupt (Ctrl-Break), 18, 67
ShowSQL (Alt-F2), 13, 27

keywords, 24, 45
in PAL applications, 78
NOFETCH, 93, 105
NULL, 118

PRODUCT, 114
REMOTE, 80, 82
TITLE, 114
VALUES, 114

L

Local command, 28

local errors, 73, 86

local replica, 24

local tables, 10
copying, 29, 31, 54
creating, 28-29, 82
deleting, 83

logs, write-ahead, 11

M

Make connection command, 59
MakeReplicas

SQL Setup and, 132

SQL Setup menu option, 132
menu options

reports, 131, 137
MENUPROMPT(), 89
menus, 21

Connection, 57

Preferences, 65

ReplicaTools, 62

Report, 48-49

SQL, 56

SQL Setup Main, 124

Tools, 53

Transaction, 60
MiniScript command, 94
More command, 67
multi-table forms, 53
multi-table reports, 49, 92
multiple users, 123

N

naming conventions, 24, 50
server compatibility, 16

NewEntries command, 28

NOFETCH keyword, 93, 105

NULL keyword, 118

null strings, 95

null values
defined, 12
fields, 12

workaround to prevent (in remote table), 12

numeric fields, 47

(0

operators

query, 45

query statements, 45
operators, query, 64
Orders script, 144
Orders table, 146
Ordrdata table, 145
Output command, 29

P

PAL applications, 141
accessing remote tables with, 14, 71
comments in, 93
database servers and, 20, 94
enhancements, 71
error-handling, 19, 73
interrupts and, 67
remote queries and, 48
syntax conventions, 3, 77
transaction processing and, 65, 74-76
PAL commands, 72, 76-117
ADD, 79
COPY, 80
CREATE, 82
DELETE, 83
EMPTY, 84
REPORT, 92
SQL..ENDSQL, 75, 93
SQLAUTOCOMMIT, 75, 96, 97
SQLBREAKCONNECT, 98
SQLCLEARCONNECT, 99
SQLCOMMIT, 75, 100
SQLFETCH, 95, 104, 105
SQLMAKECONNECT, 107
SQLRELEASE, 105, 110
SQLRESTORECONNECT, 111
SQLROLLBACK, 75, 111, 112
SQLSAVECONNECT, 113
SQLSELECTCONNECT, 114, 147
SQLSETINTERRUPT, 115
SQLSTARTTRANS, 75, 116

Index

161

PAL functions, 73, 85, 86-119
ERRORCODEY), 73, 85, 86, 148
ERRORMESSAGEY(), 73, 88, 148
ISSQLO), 88
SQLCONNECTINFO(), 101, 102, 147
SQLERRORCODE(), 73, 103, 148
SQLERRORMESSAGE(), 73, 104, 148
SQLISCONNECT(), 106
SQLISREPLICA(), 107
SQLMAPINFO(), 109
SQLVALO, 117, 118, 119

PARADOX.DSQ, 126, 129-131

passthrough queries, 18
See also UseSQL

passwords, 10
assigning to replicas, 70
clearing, 99
protecting a PARADOX.DSQ file, 130

Preferences command, 65

Preferences menu, 65

primary remote index, 51

Printer command, 29

printing conventions, 3

privileges needed for remote operations, 15
See also access privileges

Problems table, 25

procedures
error, 74, 100, 144, 148

PRODUCT keyword, 114

product registration, 5

Products table, 145

Protect command, 70

Q

QBE operators
supported, 45
unsupported, 47
queries, 1, 118
displaying the SQL translation of, 47
problems with, 18
releasing, 110
remote tables, 13, 18, 26-27, 105
saving, 48, 64-64
unsupported operators, 45
valid operators, 45, 47, 64
query by example, 64
QUERY command, 90
query forms, 44
displaying onscreen, 90
See also Ask
query operators, 45

162 User's Guide

query statements, 90
checking, 91
editing, 90
entering example elements in, 91
retrieving, 90
using variables in, 91
quick tour, 21-32

R

reconnecting to database servers, 59, 107
records, 10
adding to tables, 26, 28-29, 79
arrays of, 105
deleting, 31, 69, 84
saving, 31, 52
updating, 67, 96, 118
registering your purchase, 5
Remote command, 24, 29
remote errors, 73, 86, 103, 104
REMOTE keyword, 80, 82
remote operations, 89
compatibility, 16-20
remote tables, 10, 18-19, 63, 121
access privileges, 15
accessing, 14, 67-70
copying, 29, 54, 80
creating, 14, 23, 49-51, 82
deleting, 32, 83
entering data in, 25-26, 51, 105
managing, 56
multi-table forms and, 53
multi-table reports and, 49
problems with, 52
querying, 13, 18, 26-27, 105
restructuring, 53
returning structural status of, 109
Rename replica command, 62
replica connection, 14
replica, defined, 13
replicas, 14, 107
converting numeric fields to currency, 135
copying, 63
creating, 122, 132
deleting, 63
local, 24
naming conventions, 14
PAL applications and, 71
password-protecting, 70
problems with, 19

renaming, 62
selecting tables to replicate, 134
special considerations for case-sensitive
servers, 133
ReplicaTools menu, 62, 136
REPORT command, 92
Report menu, 48-49, 92
reports, 29, 49
customized connections, 131
multi-table, 49, 92
printing, 92
SQL Setup replica list, 137
Restructure command, 53
Retval system variable, 93
rights
See access privileges
ROLLBACK command, 31, 61
defined, 11
run-time errors, 85, 88, 94, 103, 104

S

sample application, 141-153
code example, 149
explanation of approach used, 142
installing, 145
Multi-user access requirements, 147
scripts, 144
starting, 146
saving customized connections, 129
screens, SQL Connection, 127
scripts, 64
error-handling, 87
Instlsql, 145
Orders, 144
Sqlerror, 144, 148
Startapp, 144, 146
Select connection command, 22, 57
server connection, 14
clearing, 99
customizing, 122, 123
interrupting, 59, 98
PAL applications and, 94
parameters, 15, 98, 127
restoring, 59, 107, 111
saving, 113
selecting, 22, 57, 114
setting, 127-130
testing, 102, 106, 108
servers, 1, 14, 98
access privileges, 15
accessing, 12, 93, 113

defined, 9

supported, 1
SetInterrupt command, 67
ShowSQL (Alt-F2), 13, 27
SHOWSQL command, 92
source table, 54
spaces

in column names, 122

SQL Setup and, 122
SQL menu, 56
SQL Probs table, 122
SQL Setup, 126

before you start, 123

Connection menu, 124

converting numeric fields to currency, 135

customizing a connection, 126-132

function keys, 123

leaving, 139

Main menu, 124

Make Replicas menu option, 132

searching for remote tables, 133

starting, 124
SQL statement

creating in UseSQL, 36

editing, 37
SQL statements, 33

comments and, 93

entering, 36, 71

PAL expressions and, 94

sending, 93

testing for compatible connection, 102
SQL...ENDSQL command, 75, 93
SQLAPPLIB, 145
SQLAUTOCOMMIT command, 65, 75, 96, 97
SQLBREAKCONNECT command, 98
SQLCLEARCONNECT command, 99
SQLCOMMIT command, 75, 100
SQLCONNECTINFO() function, 101, 102, 147
Sqlerror script, 144, 148
SQLERRORCODE() function, 73, 103, 148
SQLERRORMESSAGE() function, 73, 104
SQLFETCH command, 104, 105
SQLISCONNECT() function, 106
SQLISREPLICA() function, 107
SQLMAKECONNECT command, 107
SQLMAPINFO() function, 109
SQLRELEASE command, 105, 110
SQLRESTORECONNECT command, 111
SQLROLLBACK command, 75, 111, 112
SQLSave command, 64
SQLSAVECONNECT command, 113
SQLSELECTCONNECT command, 114, 147

Index

163

SQLSETINTERRUPT command, 115
SQLSTARTTRANS command, 75, 116
SQLVAL(function, 117, 118, 119
standard reports, 29, 91
Start transaction command, 30, 61
starting Paradox without SQL Link, 22
starting SQL Link, 22
starting SQL Setup, 124
starting UseSQL, 34
Startsql script, 144, 146
status messages, 35, 125
strings, 117
alphanumeric, 93
Structured Query Language, 1, 12
translating PAL expressions to, 117
supported QBE operators, 45

syntax conventions (PAL applications), 3, 77

system variable (Retval), 93

T

Table command
Copy, 29
Delete, 32
Table command (Delete), 49
tables, 10
accessing, 9
Answer, 26
Changed, 68
copying to different directories, 63
duplicate names, 14, 49
duplicating, 29, 54, 81
emptying, 31, 69, 84
Entry, 25
keyed, 68
naming conventions, 24
overwriting, 55
passwords and, 10
Problems, 25
replicas vs., 14
returning status of, 107
sample application, 146
target, 55
updating, 50
write-ahead logs and, 11
target table, 55
Tcust table, 145
technical support, 5
hours of operation, 6
tildes, in query statements, 91
TITLE keyword, 114
Tools menu, 53

164 User's Guide

Transaction menu, 60
transaction processing, 11-12, 30
PAL applications and, 65, 74-76
transactions, 30
abandoning, 11, 61, 111
defined, 11
disabling autocommit, 66
enabling autocommit, 65
interrupting, 18
saving, 11, 61, 96, 100
starting, 61, 116

typography, 3
U

unique indexes
as used by Paradox, 17-18
creating, 17
unsupported QBE operators, 47
Update command, 29
users, multiple, 123
UseSQL
connection menu, 34
creating statements, 36
edit menu, 38
editing SQL statements, 37
executing a SQL statement, 40
file menu, 35
leaving, 41
navigating between cards, 37
renaming cards, 36
search menu, 39
starting, 34
UseSQL script, 33

\

values (field), 12, 105
array of, 95
converting, 118
VALUES keyword, 114
variable, Retval system, 93
variables
entering in query statements, 91
in PAL applications, 78
viewing the SQL translation of a query, 27
See also ShowSQL

w

wide tables, workaround, 122

wildcard operators, 47

working directory
checking before starting SQL Setup, 123
replica creation and, 122

workspace, clearing, 27, 99

workstations, 9

write-ahead logs, 11

Index

165

PARADOX

SQLLINK

BORLAND

Corporate Headquarters: 1800 Green Hills Road, P.0. Box 660001, Scotts Valley, CA 95067-0001, (408) 438-5300. Offices in: Australia,
Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Malaysia, Netherlands, New Zealand, Singapore, Spain,
Sweden, Taiwan and United Kingdom = Part #23MN-PQL01-40 = BOR 3154

